在Kubernetes上部署和管理容器化存储系统

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: Kubernetes是一款容器编排系统,它可以帮助用户快速部署、扩展和管理复杂的容器化应用。容器化存储系统则是一种存储方式,它将数据存储在容器中,并可以在容器之间进行移动和共享。Kubernetes可以通过容器化存储系统来实现数据的持久化,从而保证应用的可靠性和高可用性。

一、概述

1.1 Kubernetes与容器化存储的关系

Kubernetes是一款容器编排系统,它可以帮助用户快速部署、扩展和管理复杂的容器化应用。容器化存储系统则是一种存储方式,它将数据存储在容器中,并可以在容器之间进行移动和共享。Kubernetes可以通过容器化存储系统来实现数据的持久化,从而保证应用的可靠性和高可用性。

1.2 容器化存储系统的基本架构概述

容器化存储系统的基本架构包括以下几个组件:

  • 存储控制器:用于控制存储系统的行为和状态,负责与Kubernetes进行交互。
  • 存储节点:将存储设备暴露给Kubernetes集群,并提供文件系统和卷管理等功能。
  • 存储卷插件:用于提供不同类型的存储卷,如块设备、文件系统和对象存储等。

1.3 在Kubernetes上部署和管理容器化存储系统的必要性

在Kubernetes上部署容器化存储系统可以帮助用户实现数据的持久化和共享。与传统的存储系统相比,容器化存储系统具有更好的灵活性和可扩展性,可以满足Kubernetes集群中不同应用的存储需求。

二、在Kubernetes上部署容器化存储系统

2.1 容器化存储系统的Kubernetes Operator实现

2.1.1 Operator基本原理

Kubernetes Operator是一种控制器它可以将Kubernetes集群中的自定义资源与自定义控制器进行绑定,从而自动化应用程序的部署和管理。对于容器化存储系统来说,Kubernetes Operator可以将存储系统的各个组件进行封装,并提供相应的API,使得用户可以方便地通过Kubernetes来创建、删除和管理存储系统。

2.1.2 Operator实现过程

Operator的实现过程需要以下几个步骤:

  1. 创建自定义资源:使用Kubernetes API来定义新的自定义资源Kind,用于描述容器化存储系统的组件和状态。
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: storage.example.com
spec:
  group: example.com
  names:
    kind: Storage
    plural: storages
    singular: storage
  scope: Namespaced
  subresources:
    status: {}
  version: v1alpha1
  1. 定义自定义控制器:创建一个自定义控制器,它将监视自定义资源的更改,并在需要时对存储系统进行操作。在这个控制器中,可以定义一些自定义的行为,如卷的创建、删除和扩容。
type StorageController struct {
    KubeClient *kubeclient.Clientset
}
 
func (sc *StorageController) Run() error {
    // 获取 Storage 自定义资源
    storageList, err := sc.KubeClient.ExampleClientset.StorageV1alpha1().Storages().List(metav1.ListOptions{})
    if err != nil {
        log.Fatal("Failed to list Storages: ", err)
    }
    for _, storage := range storageList.Items {
        // 处理 Storage 自定义资源
        sc.handle(storage)
    }
}
 
func (sc *StorageController) handle(storage examplev1alpha1.Storage) {
    // 处理 Storage 自定义资源相关的逻辑
}
  1. 绑定自定义资源和自定义控制器:使用Kubernetes API将自定义控制器与自定义资源进行绑定,并创建相应的API服务。
apiVersion: apps/v1beta1
kind: Deployment
metadata:
  name: storage-controller
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: storage-controller
    spec:
      containers:
        - name: storage-controller
          image: my-registry/storage-controller
          args: ["--kubeconfig=/etc/kubernetes/kubeconfig", "--master=https://my-kubernetes-cluster.com:443"]
      volumes:
        - name: kubeconfig
          configMap:
            name: kubeconfig

2.2 容器化存储系统的Kubernetes CSI Driver实现

2.2.1 CSI Driver基本原理

Kubernetes CSI Driver是一种插件模型它可以将存储系统的功能暴露给Kubernetes,从而实现对存储资源的管理和调度。对于容器化存储系统来说,可以通过Kubernetes CSI Driver实现存储卷的创建、挂载和卸载等操作。

2.2.2 CSI Driver实现过程

CSI Driver的实现过程需要以下几个步骤:

  1. 编写CSI插件:编写一个CSI插件,它实现了Kubernetes CSI规范中定义的GRPC接口,使得该插件可以被Kubernetes调用。
// 插件实现 kubelet 接口,接收来自 kubelet 上的 CSI 请求,根据请求参数执行相应的操作。
type ExampleStoragePlugin struct {}
 
func (sp *ExampleStoragePlugin) NodeGetInfo(ctx context.Context, req *csi.NodeGetInfoRequest) (*csi.NodeGetInfoResponse, error) {
    // 获取节点信息,例如节点名称和节点ID
    // 可以在这里实现自定义的节点信息逻辑
 
    return &csi.NodeGetInfoResponse{
        NodeId: "node-id",
        MaxVolumesPerNode: 10,
    }, nil
}
  1. 注册CSI插件:使用Kubernetes API将CSI插件与Kubernetes CSI Driver进行绑定,并创建相应的API服务。
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: csi-example-driver-node
  labels:
    app: csi-example-driver
spec:
  selector:
    matchLabels:
      app: csi-example-driver-node
  template:
    metadata:
      labels:
        app: csi-example-driver-node
    spec:
      containers:
      - name: csi-example-driver
        image: my-registry/csi-example-driver
        volumeMounts:
        - name: plugins-dir
          mountPath: /var/lib/kubelet/plugins/example.com
      - name: csi-provisioner
        image: my-registry/csi-provisioner
        volumeMounts:
        - name: plugins-dir
          mountPath: /var/lib/kubelet/plugins/example.com
      volumes:
      - name: plugins-dir
        hostPath:
          path: /mnt/data

三、容器化存储系统的管理与使用

3.1 容器化存储系统的动态Provisioning

3.1.1 动态Provisioning流程

容器化存储系统支持动态Provisioning功能,可以在Kubernetes集群中根据需求自动创建存储卷。

动态Provisioning流程如下:

  1. 应用程序请求Kubernetes创建存储卷。
apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: nginx
    volumeMounts:
    - name: my-persistent-volume
      mountPath: /data
  volumes:
  - name: my-persistent-volume
    persistentVolumeClaim:
      claimName: my-claim
  1. Kubernetes检查是否有可用的存储资源。
  2. Kubernetes通过StorageClass定义自动选择适当的存储系统。
  3. Kubernetes通过Provisioner定义自动创建并绑定存储卷到Pod中。

3.1.2 动态Provisioning实现方法

容器化存储系统的动态Provisioning功能可以通过以下两种方式来实现:

  • 使用Kubernetes内置的CSI Driver

Kubernetes内置了一些CSI Driver,如nfs和glusterfs,可以使用它们来实现动态Provisioning功能,无需自己编写插件。

  • 自行编写CSI Driver

如果Kubernetes集群中使用的存储系统没有内置的CSI Driver,可以通过自行编写插件来实现动态Provisioning功能。

3.2 Kubernetes上存储卷的使用

3.2.1 存储卷的概念和使用方式

存储卷是Kubernetes中的一种对象用于存储应用程序的数据可以与容器一起使用

存储卷使用方式如下:

  1. 创建一个存储卷
apiVersion: v1
kind: PersistentVolume
metadata:
  name: my-volume
spec:
  capacity:
    storage: 1Gi
  accessModes:
  - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  NFS:
    server: my-nfs-server
    path: /exports/my-volume
  1. 在Pod中使用存储卷
apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: nginx
    volumeMounts:
    - name: my-persistent-volume
      mountPath: /data
  volumes:
  - name: my-persistent-volume
    persistentVolumeClaim:
      claimName: my-claim

3.2.2 存储卷类型及其基本特性

Kubernetes中有多种存储卷类型它们有各自的特性和适用场景如下所示:

  • emptyDir:临时目录,数据不会保存在磁盘上,容器重启时数据会丢失。
  • hostPath:将主机的文件系统暴露给容器,访问速度快,但可移植性较差。
  • nfs:网络文件系统,数据存储在NFS服务器上,适合许多容器访问同一份数据。
  • glusterfs:分布式文件系统,数据存储在多台主机上,可以实现高可用和可扩展性。
  • cephfs:分布式文件系统,数据存储在多台主机上,可以实现高可用和可扩展性。
  • local:本地存储,数据存储在节点上,适合I/O密集型的应用。

3.3 容器化存储系统的数据保护

3.3.1 Snapshot和Clone的概念和实现

存储系统的数据保护包括数据备份、恢复、快照和克隆功能。其中快照和克隆是最常用的数据保护功能。

快照是存储系统创建数据副本的一种方法。它几乎瞬间完成,不会占用额外的存储空间,可以随时恢复到某个时间点。

克隆是以快照为基础创建的一份全新的副本。它可以在生产环境外测试应用程序,也可以用于快速复制数据。

3.3.2 Backup和Restore的实现

备份和恢复是存储系统的另一种数据保护方式。备份可以在特定时间点创建数据副本,以应对数据的灾难性丢失情况。

恢复是将备份数据恢复到原始位置的过程,让应用程序继续工作。实现备份和恢复功能可以使用Kubernetes提供的VolumeSnapshot API 和 VolumeSnapshotContent API,也可以使用自己的存储系统提供的 API 和工具。

四、常见容器化存储系统在Kubernetes上的部署

Kubernetes作为当前最受欢迎的容器编排平台,可以很好地管理容器应用的生命周期,其内置的存储系统也可以满足大多数应用程序的需求。但对于某些应用程序或企业级解决方案而言,Kubernetes内置的存储系统不足以满足其需求。在这种情况下常见的容器化存储系统,如Ceph RBD、GlusterFS和NFS等,就成为了备选方案。本文将介绍这些存储系统在Kubernetes上的部署方法和注意事项,以及如何实现支持动态Provisioning的CSI Driver。

4.1 Ceph RBD

Ceph RBD是一种快速、可靠、分布式的块存储系统,可以作为Kubernetes的存储后端,为容器提供高性能的块存储服务。Ceph RBD部署的过程如下:

  1. 部署Ceph存储集群。
  2. 安装和配置RBD客户端,以便Kubernetes节点可以访问Ceph存储集群。
  3. 创建RBD存储卷的Kubernetes存储类。
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: ceph-rbd
provisioner: ceph.com/rbd
parameters:
  monitors: "<MONITOR1>,<MONITOR2>,<MONITOR3>"
  pool: "<POOL>"
  imageFormat: "2"
  imageFeatures: "layering"
  1. 在Kubernetes上创建PVC和Pod,然后使用RBD存储卷。

如果想要实现支持动态Provisioning的CSI Driver,可以使用RBD CSI Driver,具体步骤如下:

  1. 部署RBD CSI Driver。
  2. 在Kubernetes节点上安装和配置RBD CSI Driver。
  3. 创建RBD CSI Driver的外部存储类。
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: rbd
provisioner: rbd.csi.ceph.com
parameters:
  monitors: "<MONITOR1>,<MONITOR2>,<MONITOR3>"
  pool: "<POOL>"
  1. 在Kubernetes上创建PVC和Pod,然后使用RBD CSI Driver存储卷。

4.2 GlusterFS

GlusterFS是一种可扩展的网络文件系统可以为Kubernetes容器提供高可用、高性能、高扩展性的文件存储服务。GlusterFS部署的过程如下:

  1. 部署GlusterFS存储集群。
  2. 安装和配置GlusterFS客户端,以便Kubernetes节点可以访问GlusterFS存储集群。
  3. 创建GlusterFS存储卷的Kubernetes存储类。
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: glusterfs
provisioner: kubernetes.io/glusterfs
parameters:
  resturl: "http://<GLUSTERFS_SERVER>:24008"
  clusterid: "<CLUSTER_ID>"
  volumetype: "replica 2"
  1. 在Kubernetes上创建PVC和Pod,然后使用GlusterFS存储卷。

如果想要实现支持动态Provisioning的CSI Driver,可以使用GlusterFS CSI Driver,具体步骤如下:

  1. 部署GlusterFS CSI Driver。
  2. 在Kubernetes节点上安装和配置GlusterFS CSI Driver。
  3. 创建GlusterFS CSI Driver的外部存储类。
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: glusterfs
provisioner: gluster.org/glusterfs
parameters:
  endpoint: "<GLUSTERFS_SERVER>"
  restauthenabled: "false"
  1. 在Kubernetes上创建PVC和Pod,然后使用GlusterFS CSI Driver存储卷。

4.3 NFS

NFS是一种基于客户端和服务器之间共享文件的网络文件系统可以为Kubernetes容器提供轻量、可靠、易用的文件存储服务。NFS部署的过程如下:

  1. 部署NFS服务器
  2. 配置NFS服务器以允许Kubernetes节点访问共享目录
  3. 创建NFS存储卷的Kubernetes存储类
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: nfs
provisioner: kubernetes.io/nfs
parameters:
  server: "nfs-server.example.com"
  path: "/exports"
  1. 在Kubernetes上创建PVC和Pod,然后使用NFS存储卷

使用NFS存储卷时,需要注意以下几点:

  • NFS存储卷应该在Pod中只读挂载
volumeMounts:
- name: nfs-volume
  mountPath: /data
  readOnly: true
  • 应该使用别名来指定NFS服务器的IP地址或域名,以避免在有多个NFS服务器的情况下需要更改存储类。
parameters:
  server: "nfs.example.com"
  path: "/exports/data"

五、小结回顾

容器化存储系统的部署和管理是容器编排平台的一个重要组成部分,随着Kubernetes的发展和普及,对存储系统的要求也越来越高。对于企业级应用程序而言,Kubernetes内置的存储系统不够灵活、不够高效、不够智能就需要使用常见的容器化存储系统,如Ceph RBD、GlusterFS和NFS等,来满足其需求。在这种情况下,快速、可靠、智能的存储系统将成为企业级应用程序中不可或缺的一部分。未来容器化存储系统将朝着更快、更稳定、更易用的方向发展。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
3月前
|
Kubernetes Docker Python
Docker 与 Kubernetes 容器化部署核心技术及企业级应用实践全方案解析
本文详解Docker与Kubernetes容器化技术,涵盖概念原理、环境搭建、镜像构建、应用部署及监控扩展,助你掌握企业级容器化方案,提升应用开发与运维效率。
605 108
|
3月前
|
运维 监控 数据可视化
小白也能部署应用,3个免费的容器化部署工具测评
本文对比了三款容器化部署工具:Docker Compose、Portainer 和 Websoft9。Docker Compose 适合开发者编排多容器应用,Portainer 提供图形化管理界面,而 Websoft9 则面向中小企业和非技术人员,提供一键部署与全流程运维支持,真正实现“开箱即用”。三款工具各有定位,Websoft9 更贴近大众用户需求。
小白也能部署应用,3个免费的容器化部署工具测评
kde
|
29天前
|
存储 关系型数据库 MySQL
MySQL Docker 容器化部署全指南
MySQL是一款开源关系型数据库,广泛用于Web及企业应用。Docker容器化部署可解决环境不一致、依赖冲突问题,实现高效、隔离、轻量的MySQL服务运行,支持数据持久化与快速迁移,适用于开发、测试及生产环境。
kde
250 4
|
3月前
|
运维 数据可视化 C++
2025 热门的 Web 化容器部署工具对比:Portainer VS Websoft9
2025年热门Web化容器部署工具对比:Portainer与Websoft9。Portainer以轻量可视化管理见长,适合技术团队运维;Websoft9则提供一站式应用部署与容器管理,内置丰富开源模板,降低中小企业部署门槛。两者各有优势,助力企业提升容器化效率。
304 1
2025 热门的 Web 化容器部署工具对比:Portainer VS Websoft9
|
2月前
|
存储 Kubernetes 持续交付
为什么Docker容器化改变了开发与部署?
为什么Docker容器化改变了开发与部署?
|
2月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
265 3
|
2月前
|
Kubernetes Devops Docker
Kubernetes 和 Docker Swarm:现代 DevOps 的理想容器编排工具
本指南深入解析 Kubernetes 与 Docker Swarm 两大主流容器编排工具,涵盖安装、架构、网络、监控等核心维度,助您根据团队能力与业务需求精准选型,把握云原生时代的技术主动权。
223 1
|
13天前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
90 1

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多