【云原生】容器编排技术Docker Compose

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 【云原生】容器编排技术Docker Compose

Compose为什么需要Docker

Docker帮助我们解决服务的打包安装的问题,随着而来的问题就是服务过多的带来如下问题:


多次使用Dockerfile Build Image或者DockerHub拉取Image;

需要创建多个Container,多次编写启动命令;

Container互相依赖的如何进行管理和编排;

当我们服务数量增多的时候,上面三个问题就会更加的被放大,如果这三个问题不解决,其实从虚拟机到容器化除了机器减少一些浪费以外,好像没有更多的变化。Docker有没有什么好的方法,可以让我们通过一个配置就搞定容器编排和运行呢?这个时候Docker Compose就站出来了。


Docker Compose可以做到以下几点:


提供工具用于定义和运行多个docker容器应用;

使用yaml文件来配置应用服务(docker-compse.yml);

可以通过一个简单的命令docker-compse up可以按照依赖关系启动所有服务;

可以通过一个简单的命令docker-compose down停止所有服务;

当一个服务需要的时候,可以很简单地通过–scale进行扩容;

Docker Compose有以下特征:


更高的可移植性,Docker Compose仅需一个docker-compse up可以完成按照依赖关系启动所有服务,然后使用docker-compose down轻松将其拆解。帮助我们更轻松地部署复杂的应用程序;

单个主机上的多个隔离环境,Compose可以使用项目名称将环境彼此隔离,这带可以在一台计算机上运行同一环境的多个副本,它可以防止不同的项目和服务相互干扰;

Docker Compose介绍

Docker Compose是一个工具,用于定义和运行多容器应用程序的工具;


Docker Compose通过yml文件定义多容器的docker应用;


Docker Compose通过一条命令根据yml文件的定义去创建或管理多容器;


28.png


Docker Compose 是用来做Docker 的多容器控制,是一个用来把 Docker 自动化的东西。有了 Docker Compose 你可以把所有繁复的 Docker 操作全都一条命令,自动化的完成。


Docker Compose安装

Docker Compose安装的最新的版本1.29.2,对于Mac和Windows安装好Docker以后,就已经安装好Docker Compose,不需要手动安装,这里的安装方式是基于Linux的Cnetos的,大家也可以参考官方网站去安装,


具体步骤如下:

下载 Docker Compose 二进制文件,版本1.29.2是目前最新最稳定的版本,要下载旧版本的大家可以更改版本号,可以参考github的版本号进行选择;

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
  1. 对二进制文件应用可执行权限;
sudo chmod +x /usr/local/bin/docker-compose


  1. 安装以后通过docker-compose --version命令检查是否安装成功;

29.png


Docker Compose版本介绍

Docker Compose版本与引擎的对应关系如下,可以看到中间主要有两个版本2和版本3两种格式,目前大家使用比较多也就是这两种,对于这两个版本的差别给大家介绍一下:


v3 版本不支持 volume_from 、extends、group_add等属性;

cpu 和 内存属性的设置移到了 deploy 中;

v3 版本支持 Docker Swarm,而 v2 版本不支持;

注意:官方目前在 1.20.0 引入了一个新–compatibility标志,帮助开发人员轻松的过渡到v3,目前还有些问题官方还不建议直接使用到生产,建议大家直接上手v3版本。


30.png


30.png


Docker Compose基本命令介绍

Docker Compose命令基本上和Docker相差不多,主要就是对Docker Compose生命周期控制、日志格式等相关命令,可以通过docker-compose --help进行帮助。


#构建建启动nignx容器
docker-compose up -d nginx                     
#进入nginx容器中
docker-compose exec nginx bash            
#将会停止UP命令启动的容器,并删除容器
docker-compose down                             
#显示所有容器
docker-compose ps                                   
#重新启动nginx容器
docker-compose restart nginx                   
#构建镜像
docker-compose build nginx      
#不带缓存的构建
docker-compose build --no-cache nginx 
#查看nginx的日志
docker-compose logs  nginx                      
#查看nginx的实时日志
docker-compose logs -f nginx                   
#验证(docker-compose.yml)文件配置,
#当配置正确时,不输出任何内容,当文件配置错误,输出错误信息
docker-compose config  -q                        
#以json的形式输出nginx的docker日志
docker-compose events --json nginx       
#暂停nignx容器
docker-compose pause nginx                 
#恢复ningx容器
docker-compose unpause nginx             
#删除容器
docker-compose rm nginx                       
#停止nignx容器
docker-compose stop nginx                    
#启动nignx容器
docker-compose start nginx                 

Docker Compose实战

我们构建一个如下的应用,通过Nginx转发给后端的两个Java应用;


31.png


  1. 新建Spring Boot应用,增加一个HelloController,编写一个hello方法,返回请求的端口和IP;
/**
 * hello
 *
 * @author wangtongzhou
 * @since 2021-07-25 09:43
 */
@RestController
public class HelloController {
    @GetMapping("/hello")
    public String hello(HttpServletRequest req) throws UnknownHostException {
        return "hello";
    }
}
  1. 指定Spring Boot的启动入口;
  <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <!-- 指定该Main Class为全局的唯一入口 -->
                    <mainClass>cn.wheel.getway.WheelGetWay</mainClass>
                </configuration>
                <executions>
                    <execution>
                        <goals>
                            <!--可以把依赖的包都打包到生成的Jar包中-->
                            <goal>repackage</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
  1. 打包Spring Boot应用;
mvn package


  1. 上传文件到Linux服务器/usr/local/docker-compose-demo的目录;
  2. 在/usr/local/docker-compose-demo的目录编辑Dockerfile;
#指定基础镜像
FROM java:8
LABEL name="docker-compose-demo" version="1.0" author="wtz"
COPY ./getway-1.0-SNAPSHOT.jar ./docker-compose-demo.jar
#启动参数
CMD ["java","-jar","docker-compose-demo.jar"]
  1. 编辑docker-compose.yml文件;
version: '3.0'
networks:
  docker-compose-demo-net:
    driver: bridge
    ipam:
      config:
        - subnet: 192.168.1.0/24
          gateway: 192.168.1.1
services:
  docker-compose-demo01:
    build:
      #构建的地址
      context: /usr/local/docker-compose-demo
      dockerfile: Dockerfile
    image: docker-compose-demo
    container_name: docker-compose-demo01
    #选择网络
    networks:
      - docker-compose-demo-net
    #选择端口
    ports:
      - 8081:8080/tcp
    restart: always
  docker-compose-demo02:
    build:
      #构建的地址
      context: /usr/local/docker-compose-demo
      dockerfile: Dockerfile
    image: docker-compose-demo
    container_name: docker-compose-demo02
    #选择网络
    networks:
      - docker-compose-demo-net
    #选择端口
    ports:
      - 8082:8080/tcp
    restart: always
  nginx:
    image: nginx:latest
    container_name: nginx-demo
    networks:
      - docker-compose-demo-net
    ports:
      - 80:80/tcp
    restart: always
    volumes:
      - /usr/local/docker-compose-demo/nginx.conf:/etc/nginx/nginx.conf:rw
volumes:
  docker-compose-demo-volume: {}
  1. 编写nginx.conf,实现负载均衡到每个应用,这里通过容器名称访问,因此不需要管每个容器的ip是多少,这个也是自定义网络的好处;
user nginx;
worker_processes  1;
events {
    worker_connections  1024;
}
http {
    include       /etc/nginx/mime.types;
    default_type  application/octet-stream;
    sendfile        on;
    keepalive_timeout  65;
server {
    listen 80;
    location / {
     proxy_pass http://docker-compose-demo;
     proxy_set_header  Host $host;
       proxy_set_header  X-real-ip $remote_addr;
       proxy_set_header  X-Forwarded-For $proxy_add_x_forwarded_for;
    }
}
upstream docker-compose-demo{
   server docker-compose-demo01:8080;
   server docker-compose-demo02:8080;
}
include /etc/nginx/conf.d/*.conf;
server {
    listen 80;
    location / {
     proxy_pass http://docker-compose-demo;
     proxy_set_header  Host $host;
       proxy_set_header  X-real-ip $remote_addr;
       proxy_set_header  X-Forwarded-For $proxy_add_x_forwarded_for;
    }
}
upstream docker-compose-demo{
   server docker-compose-demo01:8080;
   server docker-compose-demo02:8080;
}
include /etc/nginx/conf.d/*.conf;
}

查看/usr/local/docker-compose-demo目录,有以下确保有以下四个文件;


32.png

  1. 检查docker-compose.yml的语法是否正确,如果不发生报错,说明语法没有发生错误;
    docker-compose config
  2. 启动docker-compose.yml定义的服务;
docker-compose up



33.png


  1. 验证服务是否正确;
#查看宿主机ip
ip add
#访问对应的服务
curl http://172.21.122.231/hello

34.png35.png


Docker Compose Yml文件介绍


version

指定使用的版本;


Services

每个Service代表一个Container,与Docker一样,Container可以是从DockerHub中拉取到的镜像,也可以是本地Dockerfile Build的镜像。


image

标明image的ID,这个image ID可以是本地也可以是远程的,如果本地不存在,Docker Compose会尝试pull下来;

image: ubuntu

build

该参数指定Dockerfile文件的路径,Docker Compose会通过Dockerfile构建并生成镜像,然后使用该镜像;

build:
  #构建的地址
  context: /usr/local/docker-compose-demo
  dockerfile: Dockerfile

orts

暴露端口,指定宿主机到容器的端口映射,或者只指定容器的端口,则表示映射到主机上的随机端口,一般采用主机:容器的形式来映射端口;

#暴露端口
ports:
  - 8081:8080/tcp

ports

暴露端口,指定宿主机到容器的端口映射,或者只指定容器的端口,则表示映射到主机上的随机端口,一般采用主机:容器的形式来映射端口;

#暴露端口
ports:
  - 8081:8080/tcp

expose

暴露端口,但不需要建立与宿主机的映射,只是会向链接的服务提供;


environment

加入环境变量,可以使用数组或者字典,只有一个key的环境变量可以在运行compose的机器上找到对应的值;


env_file

从一个文件中引入环境变量,该文件可以是一个单独的值或者一个列表,如果同时定义了environment,则environment中的环境变量会重写这些值;


depends_on

定义当前服务启动时,依赖的服务,当前服务会在依赖的服务启动后启动;


depends_on: 
  - docker-compose-demo02
  - docker-compose-demo01

deploy

该配置项在version 3里才引入,用于指定服务部署和运行时相关的参数;

replicas

指定副本数;


version: '3.4'
services:
  worker:
    image: nginx:latest
    deploy:
      replicas: 6

restart_policy

指定重启策略;

version: "3.4"
services:
  redis:
    image: redis:latest
    deploy:
      restart_policy:
        condition: on-failure   #重启条件:on-failure, none, any
        delay: 5s   # 等待多长时间尝试重启
        max_attempts: 3 #尝试的次数
        window: 120s    # 在决定重启是否成功之前等待多长时间

update_config

定义更新服务的方式,常用于滚动更新;

version: '3.4'
services:
  vote:
    image: docker-compose-demo
    depends_on:
      - redis
    deploy:
      replicas: 2
      update_config:
        parallelism: 2  # 一次更新2个容器
        delay: 10s  # 开始下一组更新之前,等待的时间
        failure_action:pause  # 如果更新失败,执行的动作:continue, rollback, pause,默认为pause
        max_failure_ratio: 20 # 在更新过程中容忍的失败率
        order: stop-first   # 更新时的操作顺序,停止优先(stop-first,先停止旧容器,再启动新容器)还是开始优先(start-first,先启动新容器,再停止旧容器),默认为停止优先,从version 3.4才引入该配置项

resources

限制服务资源;

version: '3.4'
services:
  redis:
    image: redis:alpine
    deploy:
      resources:
        #限制CPU的使用率为50%内存50M
        limits:
          cpus: '0.50'
          memory: 50M
        #始终保持25%的使用率内存20M
        reservations:
          cpus: '0.25'
          memory: 20M

healthcheck

执行健康检查;

healthcheck:
  test: ["CMD", "curl", "-f", "http://localhost"]   # 用于健康检查的指令
  interval: 1m30s   # 间隔时间
  timeout: 10s  # 超时时间
  retries: 3    # 重试次数
  start_period: 40s # 启动多久后开始检查

restart

重启策略;

#默认的重启策略,在任何情况下都不会重启容器
restart: "no"
#容器总是重新启动
restart: always
#退出代码指示失败错误,则该策略会重新启动容器
restart: on-failure
#重新启动容器,除非容器停止
restart: unless-stopped

networks

网络类型,可指定容器运行的网络类型;

#指定对应的网络
networks:
  - docker-compose-demo-net
networks:
  docker-compose-demo-net:
    driver: bridge
    ipam:
      config:
        - subnet: 192.168.1.0/24
          gateway: 192.168.1.1

ipv4_address, ipv6_address

加入网络时,为此服务指定容器的静态 IP 地址;

version: "3.9"
services:
  app:
    image: nginx:alpine
    networks:
      app_net:
        ipv4_address: 172.16.238.10
        ipv6_address: 2001:3984:3989::10
networks:
  app_net:
    ipam:
      driver: default
      config:
        - subnet: "172.16.238.0/24"
        - subnet: "2001:3984:3989::/64"

Networks

网络决定了服务之间以及服务和外界之间如何去通信,在执行docker-compose up的时候,docker会默认创建一个默认网络,创建的服务也会默认的使用这个默认网络。服务和服务之间,可以使用服务的名字进行通信,也可以自己创建网络,并将服务加入到这个网络之中,这样服务之间可以相互通信,而外界不能够与这个网络中的服务通信,可以保持隔离性。


Volumes

挂载主机路径或命名卷,指定为服务的子选项。可以将主机路径挂载为单个服务定义的一部分,无需在顶级volume中定义。如果想在多个服务中重用一个卷,则在顶级volumes key 中定义一个命名卷,将命名卷与服务一起使用。


总结

Docker Compose 的整体使用步骤还是比较简单的,三个步骤为:


使用 Dockerfile 文件定义应用程序的环境;

使用 docker-compose.yml 文件定义构成应用程序的服务,这样它们可以在隔离环境中一起运行;

最后,执行 docker-compose up 命令来创建并启动所有服务。

虽然 docker-compose.yml 文件详解和Compose 常用命令这两大块的内容比较多,但是如果要快速入门使用 Compose,其实只需要了解其中部分内容即可。后期大家可在项目生产环境中根据自身情况再进一步深入学习即可。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
Kubernetes Cloud Native 微服务
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
|
30天前
|
监控 NoSQL 时序数据库
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
222 77
|
17天前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
90 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
1天前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
24 10
|
14天前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
79 19
|
17天前
|
Unix Linux Docker
CentOS停更沉寂,RHEL巨变限制源代:Docker容器化技术的兴起助力操作系统新格局
操作系统是计算机系统的核心软件,管理和控制硬件与软件资源,为用户和应用程序提供高效、安全的运行环境。Linux作为开源、跨平台的操作系统,具有高度可定制性、稳定性和安全性,广泛应用于服务器、云计算、物联网等领域。其发展得益于庞大的社区支持,多种发行版如Ubuntu、Debian、Fedora等满足不同需求。
44 4
|
1月前
|
负载均衡 网络协议 算法
Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式
本文探讨了Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式,以及软件负载均衡器、云服务负载均衡、容器编排工具等实现手段,强调两者结合的重要性及面临挑战的应对措施。
86 3
|
1月前
|
人工智能 Kubernetes Cloud Native
荣获2024年AI Cloud Native典型案例,阿里云容器产品技术能力获认可
2024全球数字经济大会云·AI·计算创新发展大会,阿里云容器服务团队携手客户,荣获“2024年AI Cloud Native典型案例”。
|
1月前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
53 3

相关产品

  • 容器服务Kubernetes版
  • 下一篇
    开通oss服务