阿里达摩院KDD 2022最佳论文线上分享:核心作者解读FederatedScope-GNN

简介: 阿里达摩院KDD 2022最佳论文线上分享:核心作者解读FederatedScope-GNN

近年来,在全社会对隐私保护日益重视的背景下,联邦学习的研究和应用得到了长足发展。这一进步很大程度上得益于联邦学习框架及算法库的支持。当前,这类框架对联邦学习中各个参与方的通信、计算图的描述和拆分调度、模型的部署与推理等一般性的基础设施均有完整丰富的支持。但是,现有框架和库对图联邦的支持相对有限,难以基于已有工作去建立联邦图学习的基准。学术界和工业界都对一款功能全面且对实现联邦图学习算法友好的框架有强烈需求。 在最近的 KDD 2022 应用方向最佳论文获奖工作 FederatedScope-GNN 中,阿里巴巴达摩院的研究者针对图学习提供了 DataZoo 和 ModelZoo,为用户提供了丰富多样的联邦图数据集和相应模型与算法。DataZoo 提供的大量数据集涵盖了不同领域、不同任务类型、不同统计异质性的联邦图数据,方便了使用者对所关注算法进行全面评估。ModelZoo 中包含了像 FedSage + 和 GCFL + 等最新联邦图学习算法的实现。得益于底层框架事件驱动的编程范式,参与者间多样的消息交换和丰富的行为得以模块化地进行拆分实现。同时,针对联邦图学习对超参数敏感的现象,FederatedScope-GNN 还实现了模型调优相关的模块。 基于上述功能和特性,该论文建立了全面丰富的联邦图学习基准,包含不同图上任务、不同图神经网络架构、不同的联邦优化算法等,为该领域后续的研究奠定了坚实基础。

8 月 22 日,机器之心最新一期线上分享到了 KDD 2022 最佳论文的作者王桢,为我们详细解读 FederatedScope-GNN 这项工作背后的故事。

王桢

分享主题:KDD 2022 最佳论文解读——阿里巴巴达摩院联邦图学习工作 FederatedScope-GNN

分享摘要阿里巴巴达摩院实现了针对图学习的库 FederatedScope-GNN,提供了丰富的联邦图数据集和相应模型与算法,且针对联邦图学习对超参数敏感的现象,实现了模型调优模块。该工作建立了全面丰富的联邦图学习基准,为该领域后续研究奠定基础。

分享嘉宾:王桢,2017 年博士毕业于中山大学,读博期间发表知识图谱补全算法 TransH,单篇引用量超 2500 次。毕业后加入阿里巴巴,在达摩院致力于联邦图学习等前沿研究,发表多篇国际顶级会议论文,并作为核心设计与开发人员参与开源 FederatedScope 平台。

相关论文:https://arxiv.org/pdf/2204.05562.pdf

相关文章
|
机器学习/深度学习 并行计算 测试技术
MLX vs MPS vs CUDA:苹果新机器学习框架的基准测试
如果你是一个Mac用户和一个深度学习爱好者,你可能希望在某些时候Mac可以处理一些重型模型。苹果刚刚发布了MLX,一个在苹果芯片上高效运行机器学习模型的框架。
656 1
|
11月前
|
机器学习/深度学习
深入理解SVM中的核函数及其应用
深入理解SVM中的核函数及其应用
456 91
|
11月前
|
弹性计算 负载均衡 算法
slb配置监听器
【10月更文挑战第18天】
242 3
|
11月前
|
消息中间件 NoSQL Redis
【赵渝强老师】Redis的消息发布与订阅
本文介绍了Redis实现消息队列的两种场景:发布者订阅者模式和生产者消费者模式。其中,发布者订阅者模式通过channel频道进行解耦,订阅者监听特定channel的消息,当发布者向该channel发送消息时,所有订阅者都能接收到消息。文章还提供了相关操作命令及示例代码,展示了如何使用Redis实现消息的发布与订阅。
308 0
|
12月前
|
C++
Leetcode第一题(两数之和)
这篇文章介绍了解决LeetCode第一题“两数之和”的两种方法:暴力法和哈希表法,并提供了相应的C++代码实现。
214 0
Leetcode第一题(两数之和)
|
Shell Serverless
makefile 函数全解
makefile 函数全解
866 0
makefile 函数全解
|
存储 监控 数据可视化
性能测试:主流性能剖析工具介绍
**性能剖析**是识别应用性能瓶颈的关键,涉及指标收集、热点分析、优化建议及可视化报告。常用工具有:**JConsole**监控JVM,**VisualVM**多合一分析,**JStack**分析线程,**FlameGraph**展示CPU耗时,**SkyWalking**分布式跟踪,**Zipkin**追踪服务延迟。这些工具助力开发人员提升系统响应速度和资源效率。
|
JavaScript Java 关系型数据库
图书|基于Springboot的图书管理系统设计与实现(源码+数据库+文档)
图书|基于Springboot的图书管理系统设计与实现(源码+数据库+文档)
1227 1
时间序列分析实战(五):ARIMA加法(疏系数)模型建模
时间序列分析实战(五):ARIMA加法(疏系数)模型建模
|
运维 监控 Devops
DevOps-Eval:蚂蚁集团联合北京大学发布首个面向DevOps领域的大语言模型评测基准!🚀
大语言模型在各类NLP下游任务上取得了显著进展。然而在DevOps领域,由于缺乏专门用于大型语言模型的评测基准,在有效评估和比较该领域大语言模型的能力方面存在严重不足。 为弥补这一不足,蚂蚁集团联合北京大学发布了首个面向DevOps领域的大模型评测基准DevOps-Eval,以帮助开发者跟踪DevOps领域大模型的进展,并了解各个DevOps领域大模型的优势与不足。
404 1