“柯南领结”变成现实,字节跳动智创语音团队SAMI发布新一代实时AI变声方案

简介: “柯南领结”变成现实,字节跳动智创语音团队SAMI发布新一代实时AI变声方案

字节跳动智能创作语音团队 SAMI(Speech, Audio and Music Intelligence)近日发布了新一代的低延迟、超拟人的实时 AI 变声技术。不同于传统的变声,AI 变声是基于深度学习的声音转换(Voice Conversion)技术来实现的,可以实现任意发音人的音色定制,极大程度保留原始音色的特点。

该方案的亮点如下:

  • 在 CPU 单核上就能做到极低延迟的实时输入实时变声,就像 “柯南领结” 一样;
  • 能够高度还原输入语音的抑扬顿挫、情感、口音,甚至连轻微的呼吸、咳嗽声也能还原;
  • 媲美真人的高保真音质,以及高度的目标音色一致性;


从语音合成到声音转换:探索更多元的声音玩法
语音合成作为人工智能的一个重要分支,旨在通过输入文字,经由人工智能的算法,合成像真人语音一样自然的音频,该技术已被广泛的应用于音视频创作场景中。而相比语音合成,声音转换创造了新的语音交互形式:其不再需要输入文字,而是根据用户输入的说话音频,将音频中的音色转换到目标发音人上,并保持说话内容、韵律情感等一致。相较于输入文本,输入音频包含了更丰富的副语言信息,例如各个段落的情感、抑扬顿挫、停顿等。声音转换能够做到改变音色的同时,将这些副语言信息很好的还原:



同基于深度学习的语音合成一样,声音转换的模型也由声学模型(acoustic model)和声码器(vocoder)组成。声学模型通过内容编码器从输入音频中提取出发音内容序列,并通过音色编码器从参考音频中提取出音色特征,最后通过声音转换模型生成带有输入音频内容和参考音频音色的频谱;声码器负责将声学模型生成的频谱还原为能够被设备直接播放的音频采样点:


面向实时场景的声音转换模型优化
相较于非实时场景下对完整音频的声音转换,实时声音转换有着更加丰富的落地场景。典型的场景包括直播、虚拟人这类实时交互的娱乐场景,变声的结果需要在很短的延迟内实时流式的生成,才能保证音画同步。

实时声音转换的难点在于:1. 模型在每个时刻只能获取到很短的未来音频片段,因此发音内容的正确识别更加困难;2. 流式推理的实时率(计算时长 / 音频时长)需要稳定小于 1,因此在设计模型时需要更加关注推理性能。这给研发人员带来了更大的挑战,一方面需要通过设计合理的模型结构来降低模型感受野和推理延时,另一方面需要尽可能保证变声的发音内容、音色和音质不受影响。

为了达到上述要求,研究人员对模型进行了一系列改进,使得模型的首包延时压缩到 250ms 左右。实时声音转换的整体框架如下:


对于内容编码器,研究人员采用细粒度发音提取模块代替了传统基于音素后验概率的方法,使得更多的发音细节、韵律情感能够被保留下来,且显著降低了对模型感受野的要求;对于声音转换模型,研究人员结合了 chunk 级别的信息编码和帧级别的自回归解码,并引入了基于教师指导的训练机制,从而确保了生成频谱的发音、音质和音色足够好;对于声码器,研究人员通过精巧的模型结构设计大大压缩了感受野,并通过对抗生成训练提高了生成音频的自然度。

现实版“柯南领结”:各种复杂场景不在话下
现实的语音交互中往往包含许多复杂的场景,使得现有大部分的 AI 变声系统的转换结果变得极不自然。例如,当用户输入中包含叹气、咳嗽这类声音时,现有系统倾向于对其过滤而非保留,从而导致用户想表达的副语言信息的丢失。并且,现有系统的跨域性能较差,从而导致用户进行多语种 / 方言输入时,无法转换出正确的内容。此外,现有系统在低延迟场景下的转换结果容易出现发音错误与音色不稳定的问题。

相较于现有系统,本系统在各个场景下的转换效果均显著提升。以下视频演示了无网环境下在 Macbook 上的实时流式变声效果。用户通过蓝牙耳机实时输入语音,

SAMI 的新一代 AI 变声系统对于复杂场景的适应性显著提升。这项声音转换服务可以支持云端在线服务形式输出,也支持本地化部署。未来在虚拟人、短视频玩法、客服服务、直播互动玩法上有着很大的落地空间。

目前这项技术已经可以在火山引擎 - 音频技术下的声音转换模块(电脑端点击「阅读原文」体验和开通。针对一些商业化的合作,特别是发音人的音色定制会严格审核音色的版权和授权许可。一些实时性要求比较高的业务,可以通过火山留资页沟通实时转换方案。

声音转换模块链接:https://www.volcengine.com/product/Voice-conversion

火山留资页https://www.volcengine.com/contact/product?t=Voice-conversion


相关文章
|
5天前
|
人工智能 自然语言处理 API
Mathtutor on Groq:AI 数学辅导工具,实时计算并展示解题过程,支持通过语音提出数学问题
Mathtutor on Groq 是一款基于 Groq 架构的 AI 数学辅导工具,支持语音输入数学问题,实时计算并渲染解题过程,适用于代数、微积分等领域的学习和教学辅助。
33 5
Mathtutor on Groq:AI 数学辅导工具,实时计算并展示解题过程,支持通过语音提出数学问题
|
22天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
123 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
8天前
|
传感器 人工智能 安全
杨笛一团队:一个弹窗,就能把AI智能体操控电脑整懵了
杨笛一团队最新研究揭示,简单弹窗可操控AI智能体,使其在执行任务时陷入混乱。实验显示,在OSWorld和VisualWebArena环境中,攻击成功率分别达86%和60%以上。该发现强调了AI安全的重要性,提醒我们在享受AI便利的同时需警惕潜在风险。研究指出,弹窗设计中的四个关键要素(注意力钩子、指令、信息横幅、ALT描述符)对攻击成功至关重要,并建议通过安全训练、人类监督和环境感知提升防御能力。
35 13
|
8天前
|
SQL 人工智能 API
智能导购AI助手测评 | 替代未来客服的保障方案
阿里云推出的主动式智能导购AI助手,采用Multi-Agent架构,通过规划助理、商品导购助理和历史对话信息,为顾客提供个性化的产品推荐。无论是商家还是顾客,都能从中受益。它不仅帮助顾客在购买不熟悉的产品时做出明智选择,还让商家更高效地服务客户。开发者可快速部署,使用便捷,大大降低AI技术门槛。
59 11
|
14天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
58 12
|
17天前
|
人工智能 自然语言处理 安全
主动式智能导购AI助手构建方案测评
主动式智能导购AI助手构建方案测评
47 12
|
11天前
|
人工智能 Serverless 视频直播
活动实践 | AI智能体实时语音互动
AI智能体实时语音互动方案提供端到端的实时音频交互,用户通过终端SDK与云端AI智能体进行音频通话。AI智能体接收音频输入,依据预定义工作流处理并生成响应,通过ARTC网络推送结果。该方案支持灵活编排AI组件如语音转文字、大语言模型等,确保高可用、低延迟的通信体验。用户可轻松创建和管理智能体及实时工作流,实现高效对话,并可通过示例网站体验功能。
|
14天前
|
人工智能 搜索推荐 数据库
主动式智能导购AI助手构建方案评测
阿里云推出的主动式智能导购AI助手方案,基于百炼大模型和Multi-Agent架构,通过多轮对话收集用户需求,实现精准商品推荐。其优势包括主动交互、灵活可扩展的架构、低代码开发及快速部署。商家可在10分钟内完成部署,并享受低成本试用。尽管技术细节尚需完善,该方案为电商提供了高效的客户服务工具,未来有望在个性化推荐和多模态交互方面取得突破。
|
20天前
|
人工智能 前端开发 算法
主动式智能导购 AI 助手构建方案评测
《主动式智能导购 AI 助手构建方案评测》详细评估了该方案在部署体验、技术原理理解及生产环境应用指导等方面的表现。方案在智能导购领域展现出一定潜力,但文档的详细程度和技术细节的阐述仍有改进空间,特别是在复杂操作和高级功能的指导上。总体而言,该方案具备优势,但需进一步优化以更好地满足企业需求。
73 10
|
24天前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
59 13