数据结构与算法(三):栈与队列

简介: 上一篇《 数据结构与算法(二):线性表》中介绍了数据结构中线性表的两种不同实现——顺序表与链表。这一篇主要介绍线性表中比较特殊的两种数据结构——栈与队列。首先必须明确一点,栈和队列都是线性表,它们中的元素都具有线性关系,即前驱后继关系。

一、栈

1、基本概念

栈(也称下压栈,堆栈)是仅允许在表尾进行插入和删除操作的线性表。我们把允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom)。栈是一种后进先出(Last In First Out)的线性表,简称(LIFO)结构。栈的一个典型应用是在集合中保存元素的同时颠倒元素的相对顺序。


抽象数据类型:


栈同线性表一样,一般包括插入、删除等基本操作。其基于泛型的API接口代码如下:

public interface Stack<E> {
    //栈是否为空
    boolean isEmpty();
    //栈的大小
    int size();
    //入栈
    void push(E element);
    //出栈
    E pop();
    //返回栈顶元素
    E peek();
}

栈的实现通常有两种方式:

  • 基于数组的实现(顺序存储)
  • 基于链表的实现(链式存储)

2、栈的顺序存储结构

栈的顺序存储结构其实是线性表顺序存储结构的简化,我们可以简称它为「顺序栈」。其存储结构如下图:

22.png实现代码如下:

import java.util.Iterator;
/**
 * 能动态调整数组大小的栈
 */
public class ArrayStack<E> implements Iterable<E>, Stack<E> {
    private E[] elements;
    private int size=0;
    @SuppressWarnings("unchecked")
    public ArrayStack() {
        elements = (E[])new Object[1]; //注意:java不允许创建泛型数组
    }
    @Override public int size() {return size;}
    @Override public boolean isEmpty() {return size == 0;}
    //返回栈顶元素
    @Override public E peek() {return elements[size-1];}
    //调整数组大小
    public void resizingArray(int num) {
        @SuppressWarnings("unchecked")
        E[] temp = (E[])new Object[num];
        for(int i=0;i<size;i++) {
            temp[i] = elements[i];
        }
        elements = temp;
    }
    //入栈
    @Override public void push(E element) {
        if(size == elements.length) {
            resizingArray(2*size);//若数组已满将长度加倍
        }
        elements[size++] = element;
    }
    //出栈
    @Override public E pop() {
        E element = elements[--size];
        elements[size] = null;     //注意:避免对象游离
        if(size > 0 && size == elements.length/4) {
            resizingArray(elements.length/2);//小于数组1/4,将数组减半
        }
        return element;
    }
    //实现迭代器, Iterable接口在java.lang中,但Iterator在java.util中
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private int num = size;
            public boolean hasNext() {
                return num > 0;
            }
            public E next() {
                return elements[--num];
            }
        };
    }
    //测试
    public static void main(String[] args) {
        int[] a = {1,2,3,4,new Integer(5),6};//测试数组
        ArrayStack<Integer> stack = new ArrayStack<Integer>();
        System.out.print("入栈顺序:");
        for(int i=0;i<a.length;i++) {
            System.out.print(a[i]+" ");
            stack.push(a[i]);
        }
        System.out.println();
        System.out.print("出栈顺序数组实现:");
        //迭代
        for (Integer s : stack) {
            System.out.print(s+" ");
        }
    }
}

优点:

  • 每项操作的用时都与集合大小无关
  • 空间需求总是不超过集合大小乘以一个常数

缺点:

  • push()和pop()操作有时会调整数组大小,这项操作的耗时和栈的大小成正比


3、两栈共享空间

用一个数组来存储两个栈,让一个栈的栈底为数组的始端,即下标为0,另一个栈的栈底为数组的末端,即下标为 n-1。两个栈若增加元素,栈顶都向中间延伸。其结构如下:


23.png


这种结构适合两个栈有相同的数据类型并且空间需求具有相反的关系的情况,即一个栈增长时另一个栈缩短。如,买股票,有人买入,就一定有人卖出。

代码:

public class SqDoubleStack<E> {
    private static final int MAXSIZE = 20;
    private E[] elements;
    private int leftSize=0;
    private int rightSize= MAXSIZE - 1;
    //标记是哪个栈
    enum EnumStack {LEFT, RIGHT}
    @SuppressWarnings("unchecked")
    public SqDoubleStack() {
        elements = (E[])new Object[MAXSIZE]; //注意:java不允许创建泛型数组
    }
    //入栈
    public void push(E element, EnumStack es) {
        if(leftSize - 1 == rightSize)
            throw new RuntimeException("栈已满,无法添加"); 
        if(es == EnumStack.LEFT) {
            elements[leftSize++] = element;
        } else {
            elements[rightSize--] = element;
        }
    }
    //出栈
    public E pop(EnumStack es ) {
        if(es == EnumStack.LEFT) {
            if(leftSize <= 0)
                throw new RuntimeException("栈为空,无法删除"); 
            E element = elements[--leftSize];
            elements[leftSize] = null;     //注意:避免对象游离
            return element;
        } else {
            if(rightSize >= MAXSIZE - 1)
                throw new RuntimeException("栈为空,无法删除"); 
            E element = elements[++rightSize];
            elements[rightSize] = null;     //注意:避免对象游离
            return element;
        }
    }
    //测试
    public static void main(String[] args) {
        int[] a = {1,2,3,4,new Integer(5),6};//测试数组
        SqDoubleStack<Integer> stack = new SqDoubleStack<Integer>();
        System.out.print("入栈顺序:");
        for(int i=0;i<a.length;i++) {
            System.out.print(a[i]+" ");
            stack.push(a[i], EnumStack.RIGHT);
        }
        System.out.println();
        System.out.print("出栈顺序数组实现:");
        //迭代
        for(int i=0;i<a.length;i++) {
            System.out.print(stack.pop(EnumStack.RIGHT)+" ");
        }
    }
}

4、栈的链式存储结构

栈的链式存储结构,简称链栈。为了操作方便,一般将栈顶放在单链表的头部。通常对于链栈来说,不需要头结点。

其存储结构如下图:


24.png

代码实现如下:

import java.util.Iterator;
public class LinkedStack<E> implements Stack<E>, Iterable<E> {
    private int size = 0;
    private Node head = null;//栈顶
    private class Node {
        E element;
        Node next;
        Node(E element, Node next) {
            this.element = element;
            this.next = next;
        }
    }
    @Override public int size() {return size;}
    @Override public boolean isEmpty() {return size == 0;}
    @Override public E peek() {return head.element;}
    @Override public void push(E element) {
        Node node = new Node(element, head);
        head = node;
        size++;
    }
    @Override public E pop() {
        E element = head.element;
        head = head.next;
        size--;
        return element;
    }
    //迭代器
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private Node current = head;
        public boolean hasNext() {
                return current != null;
            }
            public E next() {
                E element = current.element;
                current = current.next;
                return element;
            }
        };
    }
    public static void main(String[] args) {
        int[] a = {1,2,3,4,new Integer(5),6};//测试数组
        LinkedStack<Integer> stack = new LinkedStack<Integer>();
        System.out.print("入栈顺序:");
        for(int i=0;i<a.length;i++) {
            System.out.print(a[i]+" ");
            stack.push(a[i]);
        }
        System.out.println();
        System.out.print("出栈顺序链表实现:");
        for (Integer s : stack) {
            System.out.print(s+" ");
        }
    }
}

注意:私有嵌套类(内部类Node)的一个特点是只有包含他的类能够直接访问他的实例变量,无需将他的实例变量(element)声明为public或private。即使将变量element声明为private,外部类依然可以通过Node.element的形式调用。


优点:


所需空间和集合的大小成正比

操作时间和集合的大小无关

链栈的push和pop操作的时间复杂度都为 O(1)。

缺点:


每个元素都有指针域,增加了内存的开销。

顺序栈与链栈的选择和线性表一样,若栈的元素变化不可预料,有时很大,有时很小,那最好使用链栈。反之,若它的变化在可控范围内,使用顺序栈会好一些。


5、栈的应用——递归

栈的一个最重要的应用就是递归。那么什么是递归呢?借用《哥德尔、艾舍尔、巴赫——集异璧之大成》中的话:


递归从狭义上来讲,指的是计算机科学中(也就是像各位程序猿都熟悉的那样),一个模块的程序在其内部调用自身的技巧。如果我们把这个效果视觉化就成为了「德罗斯特效应」,即图片的一部分包涵了图片本身。


如下面这张图,「先有书还是先有封面 ?」


25.png


我们把一个直接调用自身或通过一系列语句间接调用自身的函数,称为递归函数。每个递归函数必须至少有一个结束条件,即不在引用自身而是返回值退出。否则程序将陷入无穷递归中。

一个递归的例子:斐波那契数列(Fibonacci)


26.png

递归实现:

public int fibonacci(int num) {
    if(num < 2)
        return num == 0 ? 0 : 1;
    return fibonacci(num - 1) + fibonacci(num - 2);
}

迭代实现:

public int fibonacci(int num) {
    if(num < 2)
        return num == 0 ? 0 : 1;
    int temp1 = 0;
    int temp2 = 1;
    int result = 0;
    for(int i=2; i < num; i++) {
        result = temp1 + temp2;
        temp1 = temp2;
        temp2 = result;
    }
    return result;
}

迭代与递归的区别:


迭代使用的是循环结构,递归使用的是选择结构。

递归能使程序的结构更清晰、简洁,更容易使人理解。但是大量的递归将消耗大量的内存和时间。

编译器使用栈来实现递归。在前行阶段,每一次递归,函数的局部变量、参数值及返回地址都被压入栈中;退回阶段,这些元素被弹出,以恢复调用的状态。


二、队列

1、基本概念

队列是只允许在一端进行插入操作,在另一端进行删除操作的线性表。它是一种基于先进先出(First In First Out,简称FIFO)策略的集合类型。允许插入的一端称为队尾,允许删除的一端称为队头。


抽象数据类型:


队列作为一种特殊的线性表,它一样包括插入、删除等基本操作。其基于泛型的API接口代码如下:

public interface Queue<E> {
    //队列是否为空
    boolean isEmpty();
    //队列的大小
    int size();
    //入队
    void enQueue(E element);
    //出队
    E deQueue();
}

同样的,队列具有两种存储方式:顺序存储和链式存储。

2、队列的顺序存储结构

其存储结构如下图:


27.png


与栈不同的是,队列元素的出列是在队头,即下表为0的位置。为保证队头不为空,每次出队后队列中的所有元素都得向前移动,此时时间复杂度为 O(n)。此时队列的实现和线性表的顺序存储结构完全相同,不在详述。


若不限制队列的元素必须存储在数组的前n个单元,出队的性能就能大大提高。但这种结构可能产生「假溢出」现象,即数组末尾元素已被占用,如果继续向后就会产生下标越界,而前面为空。如下图:


28.png


28.png

解决「假溢出」的办法就是若数组未满,但后面满了,就从头开始入队。我们把这种逻辑上首尾相连的顺序存储结构称为循环队列。

数组实现队列的过程:


30.png



假设开始时数组长度为5,如图,当f入队时,此时数组末尾元素已被占用,如果继续向后就会产生下标越界,但此时数组未满,将从头开始入队。当数组满(h入队)时,将数组的长度加倍。

代码如下:


import java.util.Iterator;
/**
 * 能动态调整数组大小的循环队列
 */
public class CycleArrayQueue<E> implements Queue<E>, Iterable<E> {
    private int size; //记录队列大小
    private int first; //first表示头元素的索引
    private int last; //last表示尾元素后一个的索引
    private E[] elements;
    @SuppressWarnings("unchecked")
    public CycleArrayQueue() {
        elements = (E[])new Object[1];
    }
    @Override public int size() {return size;}
    @Override public boolean isEmpty(){return size == 0;}
    //调整数组大小
    public void resizingArray(int num) {
        @SuppressWarnings("unchecked")
        E[] temp = (E[])new Object[num];
        for(int i=0; i<size; i++) {
            temp[i] = elements[(first+i) % elements.length];
        }
        elements = temp;
        first = 0;//数组调整后first,last位置
        last =  size;
    }
    @Override public void enQueue(E element){
        //当队列满时,数组长度加倍
        if(size == elements.length) 
            resizingArray(2*size);
        elements[last] = element;
        last = (last+1) % elements.length;//【关键】
        size++;
    }
    @Override public E deQueue() {
        if(isEmpty()) 
            return null;
        E element = elements[first];
        first = (first+1) % elements.length;//【关键】
        size--;
        //当队列长度小于数组1/4时,数组长度减半
        if(size > 0 && size < elements.length/4) 
            resizingArray(2*size);
        return element;
    }
    //实现迭代器
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private int num = size;
            private int current = first;
            public boolean hasNext() {
                return num > 0;
            }
            public E next() {
                E element = elements[current++];
                num--;
                return element;
            }                
        };
    }
    public static void main(String[] args) {
        int[] a = {1,2,4,6,new Integer(10),5};
        CycleArrayQueue<Integer> queue = new CycleArrayQueue<Integer>();
        for(int i=0;i<a.length;i++) {
            queue.enQueue(a[i]);
            System.out.print(a[i]+" ");
        }    
        System.out.println("入队");
        for (Integer s : queue) {
            System.out.print(s+" ");
        }
        System.out.println("出队");
    }
}

3、队列的链式存储结构

队列的链式存储结构,其实就是线性表的单链表,只不过它只能尾进头出而已,我们简称为「链队列」。

存储结构如下图:

32.png


代码如下:

import java.util.Iterator;
/**
 * 队列的链式存储结构,不带头结点的实现
 */
public class LinkedQueue<E> implements Queue<E>, Iterable<E> {
    private Node first; //头结点
    private Node last; //尾结点
    private int size = 0;
    private class Node {
        E element;
        Node next;
        Node(E element) {
            this.element = element;
        }
    }
    @Override public int size() {return size;}
    @Override public boolean isEmpty(){return size == 0;}
    //入队
    @Override public void enQueue(E element) {
        Node oldLast = last;
        last = new Node(element);
        if(isEmpty()) {
            first = last;//【要点】
        }else {
            oldLast.next = last;
        }
        size++;
    }
    //出队
    @Override public E deQueue() {
        E element = first.element;
        first = first.next;
        size--;
        if(isEmpty()) 
            last = null;//【要点】
        return element;
    }
    //实现迭代器
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            private Node current = first;
            public boolean hasNext() {
                return current != null;
            }
            public E next(){
                E element = current.element;
                current = current.next;
                return element;
            }
        };
    }
    public static void main(String[] args) {
        int[] a = {1,2,4,6,new Integer(10),5};
        LinkedQueue<Integer> queue = new LinkedQueue<Integer>();
        for(int i=0;i<a.length;i++) {
            queue.enQueue(a[i]);
            System.out.print(a[i]+" ");
        }    
        System.out.println("入队");
        for (Integer s : queue) {
            System.out.print(s+" ");
        }
        System.out.println("出队");
    }
}

循环队列与链队列,它们的基本操作的时间复杂度都为 O(1)。和线性表相同,在可以确定队列长度的情况下,建议使用循环队列;无法确定队列长度时使用链队列。


三、总结

栈与队列,它们都是特殊的线性表,只是对插入和删除操作做了限制。栈限定仅能在栈顶进行插入和删除操作,而队列限定只能在队尾插入,在队头删除。它们都可以使用顺序存储结构和链式存储结构两种方式来实现。


对于栈来说,若两个栈数据类型相同,空间需求相反,则可以使用共享数组空间的方法来实现,以提高空间利用率。对于队列来说,为避免插入删除操作时数据的移动,同时避免「假溢出」现象,引入了循环队列,使得队列的基本操作的时间复杂度降为 O(1)。


相关文章
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
41 1
|
21小时前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
24 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
14天前
|
算法
【算法】栈
栈相关算法题,供参考,附有链接地址及板书
|
21小时前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
110 75
|
21小时前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
21 7
|
21小时前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
22 9
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
76 5
|
2月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
57 0
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
下一篇
开通oss服务