Nature子刊:科学家在类脑芯片上实现类似LSTM的功能,能效高1000倍

简介: Nature子刊:科学家在类脑芯片上实现类似LSTM的功能,能效高1000倍
格拉茨技术大学的计算机科学家在 Nature 子刊上发表的一篇论文表明,他们找到了一种在神经形态芯片上模拟 LSTM 的方案,可以让类脑神经形态芯片上的 AI 算法能效提高约 1000 倍。


随着智能手机的普及,手机游戏也越来越受欢迎。但视频游戏等程序会大量耗电耗能。与 GPU 等标准硬件相比,基于 spike 的神经形态芯片有望实现更节能的深度神经网络(DNN)。但这需要我们理解如何在基于 event 的稀疏触发机制(sparse firing regime)中模拟 DNN,否则神经形态芯片的节能优势就会丧失。

比如说,解决序列处理任务的 DNN 通常使用长 - 短期记忆单元(LSTM),这种单元很难模拟。现在有一项研究模拟了生物神经元,通过放慢每个脉冲后的超极化后电位(AHP)电流,提供了一种有效的解决方案。AHP 电流可以很容易地在支持多节段(multi-compartment)神经元模型的神经形态硬件(例如英特尔的 Loihi 芯片)上实现类似于 LSTM 的功能。



滤波器逼近理论能够解释为什么 AHP 神经元可以模拟长短期记忆网络的功能。这产生了一种高能效的时间序列分类方法,让类脑神经形态芯片上的 AI 算法能效提高约 1000 倍。此外,它为高效执行大型 DNN 提供了基础,以解决有关自然语言处理的问题。研究论文近期发表在《自然 · 机器智能》期刊上。


论文地址:https://www.nature.com/articles/s42256-022-00480-w

曼彻斯特大学的计算机科学家 Steve Furber 评价这项研究称:「这是一项令人印象深刻的工作,可能给复杂 AI 算法(例如语言翻译、自动驾驶)的性能带来巨大飞跃。」

研究动机

AI 程序通常擅长在数据集中找到特定的模式。例如,在图像识别中,AI 算法首先会找到图像清晰的边缘,然后在拼凑出整体图像时记住这些边缘以及图像的所有后续部分。

这种网络的一个共同组成部分是一个被称为 LSTM 的软件单元,它在事物随时间变化时保持一个元素(element)的记忆。例如,图像中的垂直边缘需要保留在内存中,因为软件会确定它是代表数字「4」的一部分还是汽车的门。典型的 AI 系统必须同时跟踪数百个 LSTM 元素。

当前在传统计算机芯片上运行的 LSTM 网络非常准确,但是非常耗电。为了处理信息比特,它们必须首先检索存储数据的各个比特,对其进行操作,然后再将它们送回存储,并一遍又一遍地重复这个过程。

英特尔、IBM 等芯片制造商一直在尝试一种新的芯片设计方式——神经形态芯片。这种芯片处理信息的方式就像大脑中的神经元网络,其中每个神经元接收来自网络中其他神经元的输入,并在总输入超过阈值时触发。

在这种新芯片中,一些相当于神经元的硬件被连接在一起形成网络。AI 程序也依赖于人造神经网络,但在传统计算机中,这些神经元完全由软件定义,需要来回访问存储。

这种神经形态芯片同时处理存储和计算,因此更加节能。但要利用这种架构,计算机科学家需要在新型芯片架构上重新研究如何运行 LSTM 等网络。

这正是来自格拉茨技术大学的计算机科学家 Wolfgang Maass 等研究者的工作重点。他和他的同事试图复刻人脑中的一种记忆存储机制,这种机制由生物神经网络执行,称为超极化后电位 (AHP) 电流。

AHP 神经元放电模式

大脑中的神经元在触发后通常会返回到其基线水平并保持静止,直到它再次接收到超过其阈值的输入而被触发。但在 AHP 网络中,神经元放电一次后,会暂时禁止再次放电,这有助于神经元网络在消耗更少能量的同时保留信息。

Maass 和他的同事将 AHP 神经元放电模式集成到他们的神经形态神经网络软件中,并通过两个标准的 AI 测试运行他们的网络。第一个挑战是让软件在分割成数百个独立像素的图像中识别手写数字「3」。在这个测试中,他们发现,当在英特尔的神经形态 Loihi 芯片上运行时,他们的算法比在传统芯片上运行的基于 LSTM 的图像识别算法的能效高 1000 倍。

在第二项测试中,研究人员给了该网络一个 20 个句子组成的故事,测试它对故事含义的理解。结果,该神经形态装置的效率是传统计算机处理器算法的 16 倍。

Maass 指出,第二次测试是在英特尔第一代 Loihi 芯片的 22 个系列上进行的,这些芯片在相互通信时消耗相对较大的能量。该公司已经推出了第二代 Loihi 芯片,每一个都有更多的神经元,他说这将减少 chip-to-chip 通信需求,从而使软件运行更高效。

目前,神经形态芯片的商业化案例还是凤毛麟角。因此,这项研究的大规模应用可能不会很快出现。但是艾伦研究所的计算神经科学家 Anton Arkhipov 说,先进的 AI 算法(如 Maass 所展示的算法)可以帮助这些芯片获得商业立足点。「至少,这将加速 AI 系统的构建。」

反过来,这又将加速新颖的 AI 应用的出现,如一个更加智能的 AI 数字助理,这个助理不仅可以提示照片中某个人物的名字,还能帮你回忆起你是在哪里认识的这个人,以及你们之间发生了什么故事。

Maass 说,通过整合大脑中的其他神经元放电模式,未来的神经形态装置甚至有一天可以开始探索众多神经元放电模式如何共同产生意识。

原文链接:https://www.science.org/content/article/microchips-mimic-human-brain-could-make-ai-far-more-energy-efficient

相关文章
|
机器学习/深度学习 算法
【MATLAB第34期】 MATLAB 2023年棕熊算法 BOA-LSTM时间序列预测模型 #含预测未来功能,以及优化结构层数及单双向类型 研究工作量丰富且新颖
【MATLAB第34期】 MATLAB 2023年棕熊算法 BOA-LSTM时间序列预测模型 #含预测未来功能,以及优化结构层数及单双向类型 研究工作量丰富且新颖
|
3月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
207 0
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
2月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
2月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
476 0
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
278 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
5月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。

热门文章

最新文章

下一篇
oss云网关配置