阿里技术副总裁贾扬清离职,接下来瞄准AI架构方向创业

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 阿里技术副总裁贾扬清离职,接下来瞄准AI架构方向创业

又一名AI大牛辞职创业。3月21日,贾扬清在朋友圈发文,表示将正式辞任阿里技术副总裁等一系列职位,迎接职业生涯的下一个挑战。关于辞职具体原因,贾扬清解释:“阿里这段旅程,最吸引我的是云计算给社会带来的独特贡献:Al,Big data, Compute,Developer,andEcosystem。有幸能够带领计算平台事业部,一起建设大数据和AI的平台,建设从技术到产品到解决方案的团队,把大数据和AI业务做到行业领先的位置,为云上的客户创造价值。”贾扬清在朋友圈中表示,“白驹过隙,我也计划走向职业生涯的下一个挑战。”有消息称,下一步,贾扬清瞄准AI架构方向,新公司已经顺利得到首轮融资意向。据了解,与贾扬清一同携手创业的,还有他多年携手并肩的战友,曾共同参与ONNX、PyTorch和Caffe2项目。贾扬清称,此番计划创业的方向,是AI基础设施提供商,关注包括大模型在内的AI应用。具体而言,是要打造一个统一、多云和可观察的人工智能平台。新公司目标是提升人工智能产品化的效率,包括开发者效率和系统效率两个方面。通过端到端的解决方案,来帮助企业和开发者高效部署人工智能。深耕深度学习领域的人,对贾扬清一定不陌生。公开资料显示,贾扬清本科和研究生阶段就读于清华大学自动化专业,后赴加州大学伯克利分校攻读计算机科学博士。他在博士期间创立并开源了如今业内耳熟能详的深度学习框架Caffe,被微软、雅虎、英伟达、Adobe等公司采用。贾扬清于2016年加入Facebook,担任研究主任(Research scientist director),领导研究团队为所有Facebook的应用程序构建大型通用AI平台。据贾扬清介绍,该系统是Facebook 各个AI产品的支柱,例如计算机视觉,自然语言处理,语音识别,移动AI和AR等。在进入Facebook之前,贾扬清曾在谷歌实习并工作过两年,担任Google Brain的研究科学家,主要从事计算机视觉、深度学习和TensorFlow框架等研究工作。2019年3月,阿里巴巴达摩院宣布,原Facebook(脸书)人工智能科学家贾扬清已正式加入阿里巴巴,担任技术副总裁岗位,领导大数据计算平台的研发工作。
这一消息当年也曾引起了业内不小的轰动。在阿里期间,贾扬清和团队在杭州、北京和硅谷等地打造阿里的自研大数据和AI平台,并与阿里云销售团队紧密合作。他还参与阿里巴巴达摩院AI和系统方向的技术建设,为阿里巴巴集团各业务线提供AI技术支持。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
14天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
22天前
|
运维 持续交付 API
从零构建微服务架构:一次深度技术探索之旅####
【10月更文挑战第28天】 本文记录了作者在从零开始构建微服务架构过程中的深刻技术感悟,通过实战案例详细剖析了微服务设计、开发、部署及运维中的关键要点与挑战。文章首先概述了微服务架构的核心理念及其对企业IT架构转型的重要性,随后深入探讨了服务拆分策略、API网关选型、服务间通信协议选择、容器化部署(Docker+Kubernetes)、以及持续集成/持续部署(CI/CD)流程的设计与优化。最后,分享了在高并发场景下的性能调优经验与故障排查心得,旨在为读者提供一套可借鉴的微服务架构实施路径。 ####
56 3
|
2月前
|
边缘计算 Cloud Native 安全
构建灵活高效的下一代应用架构 随着企业数字化转型的加速,云原生技术正逐渐成为构建现代化应用程序的关键支柱。
随着企业数字化转型加速,云原生技术逐渐成为构建现代化应用的关键。本文探讨了云原生的核心概念(如容器化、微服务、DevOps)、主要应用场景(如金融、电商、IoT)及未来发展趋势(如无服务器计算、边缘计算、多云架构),并分析了面临的挑战,如架构复杂性和安全问题。云原生技术为企业提供了更灵活、高效的应用架构,助力数字化转型。
68 4
|
12天前
|
存储 分布式计算 关系型数据库
架构/技术框架调研
本文介绍了微服务间事务处理、调用、大数据处理、分库分表、大文本存储及数据缓存的最优解决方案。重点讨论了Seata、Dubbo、Hadoop生态系统、MyCat、ShardingSphere、对象存储服务和Redis等技术,提供了详细的原理、应用场景和优缺点分析。
|
11天前
|
人工智能 Cloud Native 算法
|
14天前
|
监控 API 微服务
后端技术演进:从单体架构到微服务的转变
随着互联网应用的快速增长和用户需求的不断演化,传统单体架构已难以满足现代软件开发的需求。本文深入探讨了后端技术在面对复杂系统挑战时的演进路径,重点分析了从单体架构向微服务架构转变的过程、原因及优势。通过对比分析,揭示了微服务架构如何提高系统的可扩展性、灵活性和维护效率,同时指出了实施微服务时面临的挑战和最佳实践。
36 7
|
12天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
58 4
|
2月前
|
Kubernetes Cloud Native 持续交付
云端新纪元:云原生技术重塑IT架构####
【10月更文挑战第20天】 本文深入探讨了云原生技术的兴起背景、核心理念、关键技术组件以及它如何引领现代IT架构迈向更高效、灵活与可扩展的新阶段。通过剖析Kubernetes、微服务、Docker等核心技术,本文揭示了云原生架构如何优化资源利用、加速应用开发与部署流程,并促进企业数字化转型的深度实践。 ####
|
13天前
|
Kubernetes Cloud Native 持续交付
云原生技术在现代应用架构中的实践与思考
【10月更文挑战第38天】随着云计算的不断成熟和演进,云原生(Cloud-Native)已成为推动企业数字化转型的重要力量。本文从云原生的基本概念出发,深入探讨了其在现代应用架构中的实际应用,并结合代码示例,展示了云原生技术如何优化资源管理、提升系统弹性和加速开发流程。通过分析云原生的优势与面临的挑战,本文旨在为读者提供一份云原生转型的指南和启示。
28 3
|
15天前
|
网络协议 数据挖掘 5G
适用于金融和交易应用的低延迟网络:技术、架构与应用
适用于金融和交易应用的低延迟网络:技术、架构与应用
44 5
下一篇
无影云桌面