即插即用、无需训练:剑桥大学、腾讯AI Lab等提出免训练跨模态文本生成框架

简介: 即插即用、无需训练:剑桥大学、腾讯AI Lab等提出免训练跨模态文本生成框架

来自剑桥大学、腾讯 AI Lab 等机构的研究者提出了一个全新的框架 MAGIC (iMAge-guided text GeneratIon with CLIP),MAGIC 通过直接插入可控图文匹配模型分数的方式,使得语言模型在解码过程中选择更接近图片信息的生成结果。


1. 导读
本文提出了一个全新的 MAGIC (iMAge-guided text GeneratIon with CLIP)框架。该框架可以使用图片模态的信息指导预训练语言模型完成一系列跨模态生成任务,例如 image captioning 和 visually grounded story generation。与其他方法不同的是,MAGIC 框架无需多模态训练数据,只需利用现成的语言模型(例如 GPT-2)和图文匹配模型(例如 CLIP)就能够以 zero-shot 的方式高质量地完成多模态生成任务。此外,不同于使用梯度更新生成模型 cache 的传统方法,MAGIC 框架无需梯度更新,因而具备更高效的推理效率。



2. 研究背景以及目的


借助日益强大的预训练语言模型,我们已经可以根据文本前缀生成一段流利文本。当前,绝大多数工作的主要研究方向集中于利用文本模态的前缀来生成后续文本的方法。然而,如何有效利用其他模态的信息(例如图片)来指导预训练语言模型生成高质量的文本,仍然是一个待解决的难题。
目前,针对此类问题最常见的解决思路是在收集好的高质量多模态平行数据的基础上,训练多模态的模型来完成特定的跨模态任务。例如,我们可以在图文匹配的标注数据集上,通过监督学习的方法训练 image captioning 模型,从而根据输入图片生成对应的文本描述。
但是,该方法存在标注数据获取困难的弊端,并不适合所有应用场景。为了解决这一难题,许多研究者提出了一系列弱监督的方法。而这类方法也有其弊端,它们会受到不同多模态任务的特定限制。例如,在 image captioning 任务中,弱监督的方法需要使用特定的目标检测器,来收集图片内可识别目标的标签信息。然而,当图片中包含目标检测器无法识别的物体 (out-of-domain object) 时,弱监督方法的有效性就会大打折扣。
为了摆脱对目标检测器的依赖从而真正实现 zero-shot 跨模态文本生成,ZeroCap[1]提出在推理阶段通过梯度更新的方式修正生成语言模型内部的隐状态,从而使生成的文本描述和图片内容尽可能接近。但是,这一方法也有其弊端,通过多次迭代梯度更新来调整模型的内部隐状态,在当前预训练语言模型参数量越来越大的趋势下,其运行效率会变得越来越低,严重限制了该方法在实际场景中的应用。
本文提出了一个全新的 MAGIC 框架。MAGIC 通过直接插入可控的图文匹配模型分数的方式,使得语言模型在解码过程中选择更接近图片信息的生成结果。这样,语言模型可以在不经过任何跨模态训练的情况下,高质量地解决跨模态生成任务,得到明显优于弱监督模型的文本生成质量。同时,与 ZeroCap 相比,MAGIC 还拥有接近 27 倍的推理速度提升。

3. 研究方法
3.1 无监督语言建模
为了适应特定跨模态任务的文本领域,该研究预先使用了跨模态训练数据集中的文本数据,采取无监督的方式更新语言模型的参数(仅需在 1 块 NVIDIA 1080Ti 上运行不到两个小时),从而使得语言模型更加熟悉该领域的文本分布。具体而言,本文使用 MLE 损失函数训练语言模型的参数:


此外,SimCTG[2]的最新工作证明了通过引入对比损失来校准模型的语义空间,能够获得质量更高的语言模型。因此,本文也同时优化如下的对比损失:


其中 是用来校准生成模型表示空间的 margin 参数,来计算 token 表示之间的余弦相似度。最终,本文将两个损失函数合并,以此来优化文本模态的 GPT-2 语言模型:


3.2 MAGIC Search
本文提出了 MAGIC Search 解码算法。MAGIC 使用视觉信息指导预训练语言模型的生成过程。具体而言,给定文本前缀 和图片第 t 步的 token 选择公式如下:


其中表示按照语言模型概率分布选择的 top-k 个候选 token。同时,该研究借鉴了 SimCTG 中 contrastive search 的思路,在 token 选择指标中引入了 model confidence 和 degeneration penalty 项来使得模型选择更合适的 token。上述公式中最重要的一项是将视觉控制信息引入到模型解码过程中的 magic score:


其中是 CLIP 的 image encoder 产生的图片表示,是 CLIP 的 text encoder 产生的文本表示。参数用来调节视觉信息的控制力度。当其值为 0 时,语言模型的生成过程不再被视觉信息所影响,从而 magic search 退化为传统的 contrastive search。
4. 实验结论
4.1 Zero-shot Image Captioning
4.1.1 实验设置
本文在 MS-COCO 和 Flickr30k 数据集上进行了大量的实验,并选用以下的无监督 baseline 进行对比:
1.top-k sampling:不基于图片信息,用 top-k 解码方法使用语言模型来生成 caption2.nucleus sampling:不基于图片信息,用 nucleus 解码方法使用语言模型生成 caption3.contrastive search:不基于图片信息,用 contrastive search 解码方法使用语言模型来生成 caption4.CLIPRe:使用 CLIP 模型从 MS-COCO 或 Flickr30k 的训练数据中检索文本数据5.ZeroCap:在解码过程中,使用 CLIP 信息来指导语言模型梯度更新的方法
值得注意的是 top-k sampling, nucleus sampling 和 contrastive search 解码方法因为不基于图片信息,所以可看作是文本生成模型在跨模态任务上的性能下界。此外,本文还选取了一批监督和弱监督的方法来进行对比。
对于评价方法,本文采用 image captioning 中经典的评价指标:BLEU-1, BLEU-4,  METEOR, ROUGE-L, CIDEr 和 SPICE,同时也测试了不同模型的相对解码速率。
4.1.2 MS-COCO 和 Flickr30k 实验结果


如上图所示,本文发现当忽视 captions 的信息,只使用语言模型进行生成时效果并不好(Top-k, Nucleus, Contrastive),这说明没有对应的图片信息,只依靠语言模型很难完成这个跨模态的任务。CLIPRe 方法效果虽然显著好于 Top-k 等纯文本解码方法,但仍然弱于当前 SOTA 无监督方法,ZeroCap,这是由 training set 和 test set 之间的数据差异所造成。这也证明了检索模型在该任务上效果弱于生成模型。
本文 MAGIC 的生成结果显著优于 ZeroCap,展示了 MAGIC 框架的有效性。并且因为 MAGIC 完全不依赖于梯度更新,其解码速度比 ZeroCap 快接近 27 倍。
4.1.3. 跨领域实验结果
此外,本文还进行了跨领域实验以进一步测试 MAGIC 的泛化能力。具体而言,本文使用在源领域(例如 MS-COCO)上得到的无监督语言模型,在目标领域(例如 Flickr30k)的测试集上进行实验。本文在该实验中对比无监督解码方法和 CLIPRe。其中 CLIPRe 的检索数据集仅来自于源领域的训练集,实验结果如下:


从表格中结果可以发现,MAGIC 远好于纯文本解码方法和 CLIPRe 强 baseline。
4.1.4. Case Study
该研究通过一些例子来定性的对比 baseline 和本文方法:


这几个例子显示出 MAGIC 不仅能够生成非常流利的文本,同时其生成文本中的信息和图片模态的关联性也更强。例如图 (a) 中,MAGIC 可以准确的生成 “building”,但是 ZeroCap 却生成了“school bus” 这个无关的结果。此外,图 (d) 中,虽然 ZeroCap 生成了 “boatboard” 这一相关词汇,但其语句流利度低,并且存在语法错误。相比之下,MAGIC 生成的文本在通顺流畅的同时,也与图片显示的内容一致。
4.2 基于视觉的故事生成
除了 image captioning 任务之外,该研究还将 MAGIC 框架拓展到了其他基于视觉的文本生成任务,例如基于视觉的故事生成(visually grounded story generation)。在该任务中,给一个图片和故事标题,模型的任务是生成一个流利有趣并且与图片内容及故事标题一致的故事。
4.2.1 实验设置
本文在 ROCStories 数据集上进行了实验,并选取以下的文本解码方式作为该研究的 baseline:(1) Greedy search;(2)Beam search;(3)Top-K sampling;(4)Nucleus sampling;(5)Typical sampling;和(6)Contrastive search。
为了达到给 ROCStories 数据集中每一个测试样例提供一个图片信息的目的,本文使用 CLIP 模型从公开的 ConceptCaption 数据集中检索和故事标题最相关的图片。
为了有效评价模型的效果,本文采用了以下几种评价指标:
1. 自动评价指标:本文采用之前文本生成研究中的一系列评价指标a.n-gram 重复率 (rep-n)b. 生成文本多样性 (div.)c. 语义一致性(coh.):生成的故事和标题是否语义一致d. 图文匹配相关性 (CLIPScore)e.MAUVE 分数
2. 人工评价指标:为了更精准的反映生成故事的质量,五个专业的标注员从以下几个角度对生成故事的质量进行打分(1-5 分,1 分最差,5 分最好)a. 相关性:生成的故事是否和标题有关b. 流利度:生成的故事是否流利易懂c. 信息量:生成的故事是否多样且有趣d. 故事图片相关性:生成的故事是否和通过标题检索得到的图片语义一致
4.2.2 实验结果


如上图所示,MAGIC 在大多数的指标上都达到了最佳的效果,明显优于其他方法。其中 rep-n, diversity 和 MAUVE 的最佳结果说明 MAGIC 生成的故事和人类文本更加接近。并且 MAGIC 在 coherence 和图文匹配一致性分数上显著优于其他的方法,说明 MAGIC 在综合利用了图片和文本标题的信息之后可以生成和标题信息更加相关的故事内容。人工评价的效果也显示 MAGIC 生成的故事在各个角度上均达到了最好的效果。
4.2.3 Case Study


如上图所示,MAGIC 可以有效的生成和图片有关的信息。在第一个例子中,MAGIC 生成的故事包含了详细的冰淇凌的种类和味道,除了 orange 的结果稍有差异,其他的文本都完美符合图片中的描述。在第二个例子中,contrastive search 生成的结果和故事标题间相关度较差。与之相反,MAGIC 生成的内容和图片中的信息及主题高度相关,例如:(1)和朋友们在沙滩;(2)打沙滩排球;(3)比赛持续了两个小时;(4)朋友赢下了比赛。

参考文献:
[1] Tewel et al., ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic, arXiv 2022[2] Su et al., A Contrastive Framework for Neural Text Generation, arXiv 2022

相关文章
|
2天前
|
人工智能 Python
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
ImBD是一款由复旦大学、华南理工大学等机构联合推出的AI内容检测器,能够快速识别机器修订文本,适用于多种场景,显著提升检测性能。
25 8
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
|
4天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
48 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
7天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
115 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
5天前
|
机器学习/深度学习 人工智能 编解码
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
VideoVAE+ 是香港科技大学推出的先进跨模态视频变分自编码器,通过时空分离压缩机制和文本指导,实现了高效视频压缩与精准重建。
33 7
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
|
4天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
17 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
1天前
|
人工智能 测试技术 决策智能
玩转智能体魔方!清华推出AgentSquare模块化搜索框架,开启AI智能体高速进化时代
清华大学研究团队提出模块化LLM智能体搜索(MoLAS)框架AgentSquare,将LLM智能体设计抽象为规划、推理、工具使用和记忆四大模块,实现模块间的轻松组合与替换。通过模块进化和重组机制,AgentSquare显著提升了智能体的适应性和灵活性,并在多个基准测试中表现出色,平均性能提高17.2%。此外,该框架还具备可解释性,有助于深入理解智能体架构对任务性能的影响。论文地址:https://arxiv.org/abs/2410.06153
25 10
|
1天前
|
机器学习/深度学习 存储 人工智能
【科普向】我们所说的AI模型训练到底在训练什么?
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
|
23小时前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
27 10
|
机器学习/深度学习 人工智能 开发工具
打造AI训练基础平台!Unity推出Machine Learning Agents
但在未来,人工智能游戏选手或许将会面临新的对手:另一个人工智能。今天,全球最大的3D游戏引擎Unity宣布发布Unity Machine Learning Agents,通过将其游戏引擎与TensorFlow等机器学习框架相连接
1686 0
|
10天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
144 97