几个GPU工作数天≈10人团队工作大半年,英伟达用AI高效设计芯片

简介: 几个GPU工作数天≈10人团队工作大半年,英伟达用AI高效设计芯片

「同样是移植一个新的技术库,如果使用人力,我们需要一个 10 人左右的团队工作大半年,但借助 AI,我们只需要花几天时间运行几个 GPU 就能完成大部分工作。」


近几年,芯片设计成为 AI 落地的一个重要领域,谷歌、英伟达、三星、西门子等多家公司都已经计划或开始尝试在芯片设计中使用 AI。其中,同时在芯片设计和 AI 领域深耕多年的英伟达有着得天独厚的优势。在前段时间的 GTC 大会上,英伟达首席科学家、计算机架构大师 Bill Dally 介绍了他们在这方面取得的进展以及所使用的 AI 工具。

以下是 Bill Dally 在 GTC 大会上的介绍原文。


预测电压降


作为 AI 专家,我们自然希望利用 AI 来设计更好的芯片。我们有几种不同的方法:一是利用现有的计算机辅助设计工具(并融入 AI),例如我们有一个可以绘制 GPU 中用电位置的地图,它还可以预测电压网下降多少——电流乘以电阻压降,被称为 IR 压降。在传统的 CAD 工具上运行该流程需要三个小时。


这是一个迭代的过程,所以进行起来有点麻烦。我们想训练一个 AI 模型来处理相同的数据。我们做了一系列的设计来进行这样的操作,然后就可以输入电源图了,最后推断时间只需三秒。当然,如果算上特征提取的时间,我们要花 18 分钟,很快就能得到结果。


我们没有使用卷积神经网络,而是用到了图神经网络,这是为了估计电路中不同节点的开关频率。同样,我们能够比传统工具更快地获得非常准确的功率估计,并且只需很少的时间。




预测寄生参数(parasitics)


我特别喜欢的一项工作是用图神经网络预测寄生参数。之前这项工作要花费大量时间,因为以前的电路设计是一个迭代的过程,你要画一个原理图,就像左边这张图。但你不知道它的性能如何,直到设计师采用该原理图进行 layout,提取寄生参数,再运行电路仿真,才会发现设计可能不符合规格,才能知道电路的性能。



接下来,设计师就要修改原理图,并再次通过 layout 来验证电路的有效性。这是一个非常漫长、反复甚至不人道的劳动密集型工作。


现在,我们可以训练图神经网络来预测寄生参数,而无需进行 layout。因此,电路设计人员可以非常快速地进行迭代,而无需手动执行 layout 步骤。事实表明:我们的神经网络对寄生参数的预测非常准确。

布局、布线挑战


我们的神经网络还可以预测布线拥塞(routing congestion),这对于芯片 layout 至关重要。在传统的流程中,我们需要制作一个网表(net list),运行布局和布线过程,这可能非常耗时,通常需要几天的时间。但如果不这么做,我们就无法得到实际的布线拥塞并发现最初布局的缺陷。我们需要对其进行重构并以不同的方式布局 macro 以避免出现下图所示的红色区域(穿过该区域的电线过多,类似于交通堵塞)。



现在借助神经网络,无需运行布局和布线,我们就可以获取这些网表并使用图神经网络大致预测拥塞的位置,准确率也非常高。这种方法暂时还不完美,但它能够显示出存在问题的区域,然后我们就能采取行动并非常快速地进行迭代,而无需进行完整的布局和布线。

自动化标准单元迁移


以上方法都是在用 AI 评价人类已经完成的设计,但实际上更令人兴奋的是用 AI 来实际设计芯片。


我来举两个例子。第一个是我们称之为 NV cell 的系统,它使用模拟退火和强化学习来设计我们的标准单元库(标准单元库是底层电子逻辑功能的集合,例如 AND、OR、INVERT、触发器、锁存器和缓冲器 )。所以在每次技术迭代的时候,比如从 7 纳米迁移到 5 纳米,我们都会拥有一个单元库。我们实际上有成千上万个这样的库,它们必须用新技术重新设计,有一套非常复杂的设计规则。


我们借助强化学习来放置晶体管,但随之而来的可能是一堆设计规则错误,而这正是强化学习所擅长的。设计芯片就像一个雅达利游戏,但它是一个在标准单元中修复设计规则错误的游戏。通过强化学习检查和修复这些设计规则错误,我们基本上能够完成标准单元的设计。


下图显示的是该工具完成度为 92% 的单元库,没有设计规则或电气规则错误。这些单元中的 12% 比人类设计的单元要小。总的来说,在单元复杂性方面,该工具做得和人类设计的单元一样好,甚至比人类的还好。


这对我们有两大好处。一是节约大量劳动力。同样是移植一个新的技术库,如果使用人力,我们需要一个 10 人左右的团队工作大半年,但借助 AI,我们只需要花几天时间运行几个 GPU 就能完成大部分可以自动化的工作(92%),然后再由人来完成剩下的 8%。很多时候我们都能拿到更好的设计,所以这个方式不光节省人力,效果也比人类手工的结果好。



相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
29天前
|
人工智能 并行计算 Linux
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
斯坦福大学推出的FramePack技术通过压缩输入帧上下文长度,解决视频生成中的"遗忘"和"漂移"问题,仅需6GB显存即可在普通笔记本上实时生成高清视频。
298 19
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
|
24天前
|
人工智能 测试技术 计算机视觉
让AI看懂3小时长视频!Eagle 2.5:英伟达推出8B视觉语言模型,长视频理解能力碾压72B大模型
Eagle 2.5是英伟达推出的8B参数视觉语言模型,通过创新训练策略在长视频和高分辨率图像理解任务中超越更大规模模型,支持512帧视频输入和多样化多模态任务。
141 11
让AI看懂3小时长视频!Eagle 2.5:英伟达推出8B视觉语言模型,长视频理解能力碾压72B大模型
|
24天前
|
机器学习/深度学习 人工智能 自动驾驶
让AI看懂图像每个像素!英伟达推出多模态大模型 DAM-3B:图像视频局部描述精度提升300%
英伟达推出的DAM-3B多模态大语言模型,通过创新的焦点提示技术和局部视觉骨干网络,实现了对图像和视频中特定区域的精准描述生成,为内容创作和智能交互领域带来全新可能。
147 0
让AI看懂图像每个像素!英伟达推出多模态大模型 DAM-3B:图像视频局部描述精度提升300%
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,分析其根源为预编译二进制文件不支持sm_120架构,并提出解决方案:使用PyTorch Nightly版本、更新CUDA工具包至12.8。通过清理环境并安装支持新架构的组件,成功解决兼容性问题。文章总结了深度学习环境中硬件与框架兼容性的关键策略,强调Nightly构建版本和环境一致性的重要性,为开发者提供参考。
762 64
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
|
13天前
|
人工智能 并行计算 监控
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
本文详细介绍了在AMD硬件上构建大型语言模型(LLM)推理环境的全流程。以RX 7900XT为例,通过配置ROCm平台、部署Ollama及Open WebUI,实现高效本地化AI推理。尽管面临技术挑战,但凭借高性价比(如700欧元的RX 7900XT性能接近2200欧元的RTX 5090),AMD方案成为经济实用的选择。测试显示,不同规模模型的推理速度从9到74 tokens/秒不等,满足交互需求。随着ROCm不断完善,AMD生态将推动AI硬件多元化发展,为个人与小型组织提供低成本、低依赖的AI实践路径。
131 1
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
|
27天前
|
人工智能 自然语言处理 API
8.6K star!完全免费+本地运行+无需GPU,这款AI搜索聚合神器绝了!
FreeAskInternet是一款革命性的开源项目,它完美结合了多引擎搜索和智能语言模型,让你在不联网、不花钱、不暴露隐私的情况下,获得媲美ChatGPT的智能问答体验。这个项目最近在GitHub上狂揽8600+星,被开发者称为"本地版Perplexity"。
|
2月前
|
人工智能 vr&ar 图形学
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
牛津大学与谷歌联合推出的Bolt3D技术,能在单个GPU上仅用6.25秒从单张或多张图像生成高质量3D场景,基于高斯溅射和几何多视角扩散模型,为游戏、VR/AR等领域带来革命性突破。
96 2
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
|
2月前
|
人工智能 安全 数据可视化
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
Gemma 3 是谷歌最新推出的开源多模态AI模型,支持超过35种语言,具备文本、图像及短视频处理能力,提供四种模型尺寸,优化单GPU性能,适用于多种AI应用场景。
404 8
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
|
2月前
|
存储 人工智能 固态存储
轻量级AI革命:无需GPU就能运算的DeepSeek-R1-1.5B模型及其低配部署指南
随着AI技术发展,大语言模型成为产业智能化的关键工具。DeepSeek系列模型以其创新架构和高效性能备受关注,其中R1-1.5B作为参数量最小的版本,适合资源受限场景。其部署仅需4核CPU、8GB RAM及15GB SSD,适用于移动对话、智能助手等任务。相比参数更大的R1-35B与R1-67B+,R1-1.5B成本低、效率高,支持数学计算、代码生成等多领域应用,是个人开发者和初创企业的理想选择。未来,DeepSeek有望推出更多小型化模型,拓展低资源设备的AI生态。
344 8
|
2月前
|
机器学习/深度学习 人工智能 并行计算
弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务基于云计算技术,为企业提供强大的GPU资源,无需自购硬件。它广泛应用于人工智能、大数据、3D建模、动画制作、GIS及医疗影像等领域,加速深度学习训练、图形处理和科学计算,提升效率并降低成本。企业可按需获取计算资源,灵活应对业务高峰,优化成本结构,推动业务发展。
50 1