ICLR 2022|让绝艺上桌打麻将,腾讯AI Lab全新策略优化算法战胜人类冠军

简介: ICLR 2022|让绝艺上桌打麻将,腾讯AI Lab全新策略优化算法战胜人类冠军

「绝艺」又有了新成果:在1v1麻将(二人雀神)测试中战胜职业冠军选手。


对于 AI 领域的研究者和从业者来说,腾讯 AI Lab 研发的围棋 AI「绝艺」的名字并不陌生。自 2016 年面世后,它已四次夺得世界顶级赛事冠军,包括 UEC 杯、AI 龙星战、腾讯世界人工智能围棋大赛、世界智能围棋公开赛等,并自 2018 年起无偿担任中国国家围棋队训练专用 AI。

在围棋以外,腾讯 AI Lab 绝艺团队持续深入研究大规模二人零和博弈问题,从完美信息游戏(围棋)逐步拓展至非完美信息游戏(例如麻将)。

4 月 25 日,腾讯 AI Lab 宣布棋牌类 AI「绝艺」取得新突破,在 1v1 麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法 Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将 benchmark 已通过论文开源,并被机器学习顶会 ICLR 2022 收录。


论文链接:https://openreview.net/pdf?id=DTXZqTNV5nW

非完美信息博弈广泛存在于日常生活的方方面面,如智慧交通、网络安全、金融分析等。腾讯 AI Lab 以麻将 AI 为切入点研究非完美信息博弈,其目标不仅限于打造世界级的国粹麻将 AI,更多的在于探索非完美信息博弈在游戏领域,以及其他广阔的社会生活领域的实际应用价值。

研究背景

棋牌游戏一直以来都是 AI 技术的优质试验场,例如,在围棋上就诞生了 AlphaGo、绝艺等标杆性的 AI。相比于围棋这类「完美信息」游戏,德州扑克,桥牌,麻将这类 “非完美信息” 游戏存在着大量的隐藏信息,例如,玩家无法直接知道对手的手牌,这给游戏带来了更高的不确定性,对 AI 的博弈能力提出更高要求。


具体而言,在完美信息游戏中,始终存在确定性的最优解,即任何状态下都存在一个固定的最优动作。然而在非完美信息游戏中,最优策略往往是随机化的。例如,在二人石头 - 剪刀 - 布游戏中,最优策略(纳什均衡策略)不在是某一个固定的动作,而是关于每个动作的一个概率分布:等概率出石头,剪刀,和布。

二人石头 - 剪刀 - 布

近年来,反事实遗憾值最小化算法(CFR)在德州扑克游戏 AI 上取得了一些列突破性进展,例如 DeepStack(2017 Science 杂志),Libratus(冷扑大师,2017 Science 杂志),和 Pluribus(2019 Science 杂志)。CFR 具有收敛到纳什均衡解的理论保证。然而,由于 CFR 是一种基于表格的算法,并且需要对游戏树做全遍历,CFR 在德州扑克游戏上的应用需要大量的领域知识来对游戏树做剪枝。虽然后续有一些工作尝试将深度学习和 CFR 做结合,但目前还没有看到 CFR 在其他大规模非完美信息游戏上的成功应用。

另一方面,由于深度强化学习高效的可扩展性,深度强化学习结合自博弈广泛用于大规模非完美信息游戏中求解高强度 AI,例如星际 2,Dota2,和王者荣耀。

然而,基于深度强化学习的大部分 AI 的鲁棒性有待提高,集中表现为 AI 容易被针对,最坏情况下的性能没有保证。这些问题的根本原因在于深度强化学习结合自博弈缺乏收敛到纳什均衡解的理论保证。例如下图所示,在一个简单的二人石头 - 剪刀 - 布游戏中,自博弈 Proximal Policy Optimization 无法收敛到(红线为收敛过程)纳什均衡解(蓝点)。  


方法简介

腾讯 AI Lab 的研究结合经典反事实遗憾值最小化算法 CFR 的思想,在大规模强化学习算法框架下提出了一个新的策略优化算法 Actor-Critic Hedge (ACH)。该算法一方面具备深度强化学习方法的可扩展性,一方面在某些条件下具备收敛到纳什均衡解的理论保证。

具体来说,我们修改传统深度强化学习策略网络的损失函数:从最大化累计奖励到拟合累计采样 advantage:


累计采样 advantage 与 CFR 中的累计遗憾值存在一定的等价关系。另外,可以证明,相比过去基于采样 regret 的方法,采样 advantage 有更小的 variance:


更小的 variance 在基于神经网络的方法中意味着更稳定的效果。


ACH 具体算法流程如下:


在该工作中,我们引入了一类新的 CFR 算法:Weighted CFR。Weighted CFR 有如下定义:


算法 ACH 可以看作是一类基于神经网络的 Weighted CFR 算法的一个高效实现。我们证明了 Weighted CFR 的算法收敛性,进而近似证明了 ACH 的算法收敛性:


另外,针对 1v1 麻将的具体神经网络设计如下:


实验结果

在对比主流方法的基础上,该算法的优越性在 1v1 麻将(战胜职业冠军)和 1v1 德州扑克上均得到了验证。

二人麻将:「二人雀神」

1v1 麻将(二人雀神)测试中,「绝艺」与世界冠军职业选手对战 1000 回合,平均赢番 0.82(标准差 0.96,单边 t 检验的 p value 为 0.19)

1v1 麻将环境,主流算法性能对比

1v1 简单德扑环境,各种经典反事实遗憾值最小化算法扩展的对比

目录
打赏
0
0
0
0
368
分享
相关文章
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
DeepMesh 是由清华大学和南洋理工大学联合开发的 3D 网格生成框架,基于强化学习和自回归变换器,能够生成高质量的 3D 网格,适用于虚拟环境构建、动态内容生成、角色动画等多种场景。
100 4
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
23 8
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
35 3
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。

热门文章

最新文章