每日学术速递5.12

简介: 用户可以付费查询的大型语言模型 (LLM) 数量迅速增加。我们审查了与查询流行的 LLM API 相关的成本,例如GPT-4、ChatGPT、J1-Jumbo,并发现这些模型具有异构的定价结构,费用可能相差两个数量级。特别是,在大量查询和文本上使用 LLM 可能会很昂贵。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理  


Subjects: cs.CV


1.ImageBind: Holistic AI learning across six modalities

f458c251910fa801ae7d70e6c99bf7f5.png


标题:ImageBind:跨六种模式的整体人工智能学习

作者:Mengyuan Yan Jessica Lin Montserrat Gonzalez Arenas Ted Xiao Daniel Kappler Daniel Ho

文章链接:https://dl.fbaipublicfiles.com/imagebind/imagebind_final.pdf

项目代码:https://github.com/facebookresearch/ImageBind

9d2c69dbf64fcbe89c5c10e984ac8315.png

de5d8fe428eed951a09f804aa33a1c42.png

948599744bf0a5c59f08fb6c23d604eb.png

27502b97a250f8aac914ae3e569c9c40.png

摘要:

       当人类从世界吸收信息时,我们天生会使用多种感官,例如看到繁忙的街道和听到汽车引擎的声音。今天,我们推出了一种方法,使机器更接近人类同时、整体和直接从许多不同形式的信息中学习的能力——不需要明确的监督(组织和标记原始数据的过程)。我们已经构建并正在开源 ImageBind,这是第一个能够绑定来自六种模式的信息的人工智能模型。该模型学习单个嵌入或共享表示空间,不仅适用于文本、图像/视频和音频,还适用于记录深度 (3D)、热(红外辐射)和惯性测量单元 (IMU) 的传感器,这计算运动和位置。ImageBind 使机器具备全面的理解力,将照片中的对象与它们的声音、3D 形状、它们的冷暖程度以及它们的移动方式联系起来。如我们的论文所述,ImageBind 可以胜过针对一种特定模态单独训练的先前专家模型。但最重要的是,它通过使机器能够更好地分析多种不同形式的信息来帮助推进人工智能。例如,使用 ImageBind,Meta 的 Make-A-Scene 可以从音频创建图像,例如根据雨林或熙熙攘攘的市场的声音创建图像。其他未来的可能性包括以更准确的方式识别、连接和调节内容,以及促进创意设计,例如更无缝地生成更丰富的媒体和创建更广泛的多模式搜索功能。ImageBind 是 Meta 致力于创建多模态 AI 系统的一部分,该系统可以从周围所有可能类型的数据中学习。随着模态数量的增加,ImageBind 为研究人员打开了尝试开发新的整体系统的闸门,例如结合 3D 和 IMU 传感器来设计或体验身临其境的虚拟世界。ImageBind 还可以提供一种探索记忆的丰富方式——使用文本、音频和图像的组合来搜索图片、视频、音频文件或文本消息。

2.HumanRF: High-Fidelity Neural Radiance Fields for Humans in Motion


c1ff6e475792db3f4ee23d949c2580d2.png

标题:HumanRF:运动中人体的高保真神经辐射场

作者:Mustafa Işık, Martin Rünz, Markos Georgopoulos, Taras Khakhulin, Jonathan Starck, Lourdes Agapito, Matthias Nießner

文章链接:https://arxiv.org/abs/2305.06356

项目代码:https://synthesiaresearch.github.io/humanrf/

2c76dc56ebeb4c9e174f7c357ce4f539.png

d5bda4dfc40f72e0a5bacbfcb45ecb40.png

0c184ad0928b720d2723bae5dd429ad5.png

62d4cab0b874e9f9726e9cc1783134f4.png

摘要:

       以高保真度表现人类表现是电影制作、电脑游戏或视频会议等各种应用的重要组成部分。为了缩小与生产级质量的差距,我们引入了 HumanRF,这是一种 4D 动态神经场景表示,可从多视图视频输入中捕捉运动中的全身外观,并能够从新颖的、看不见的视点进行回放。我们的新颖表示充当动态视频编码,通过将时空分解为时间矩阵向量分解来以高压缩率捕获精细细节。这使我们能够为长序列获得人类演员的时间相干重建,同时即使在具有挑战性的运动的背景下也能呈现高分辨率细节。虽然大多数研究都集中在 4MP 或更低分辨率的合成上,但我们解决了在 12MP 下运行的挑战。为此,我们介绍了 ActorsHQ,这是一种新颖的多视图数据集,它提供来自 160 个摄像机的 12MP 镜头,用于 16 个序列,具有高保真度、每帧网格重建。我们展示了使用此类高分辨率数据所带来的挑战,并表明我们新推出的 HumanRF 有效地利用了这些数据,朝着生产级质量的新颖视图合成迈出了重要一步。

3.FrugalGPT: How to Use Large Language Models While Reducing Cost and Improving Performance

90e65810216d05464913d7fc7e2d3202.png

标题:FrugalGPT:如何在降低成本和提高性能的同时使用大型语言模型

作者:Lingjiao Chen, Matei Zaharia, James Zou

文章链接:https://arxiv.org/abs/2305.05176

65a937d7c8a6857428f46d765e7e8bb7.png

f3911251f08fa0ca9b47574ec27cdf13.png

6918a4a6ac8c66d4109020c5f7ab2eec.png

摘要:

       用户可以付费查询的大型语言模型 (LLM) 数量迅速增加。我们审查了与查询流行的 LLM API 相关的成本,例如GPT-4、ChatGPT、J1-Jumbo,并发现这些模型具有异构的定价结构,费用可能相差两个数量级。特别是,在大量查询和文本上使用 LLM 可能会很昂贵。受此启发,我们概述并讨论了三种类型的策略,用户可以利用这些策略来降低与使用 LLM 相关的推理成本:1) 提示适应,2) LLM 近似,以及 3) LLM 级联。例如,我们提出了 FrugalGPT,这是一种简单而灵活的 LLM 级联实例,它学习将哪些 LLM 组合用于不同的查询,以降低成本并提高准确性。我们的实验表明,FrugalGPT 可以与最好的单个 LLM(例如 GPT-4)的性能相媲美,成本降低高达 98%,或者在成本相同的情况下比 GPT-4 的准确度提高 4%。这里提出的想法和发现为可持续和高效地使用 LLM 奠定了基础。

目录
相关文章
|
机器学习/深度学习 自然语言处理 机器人
每日学术速递3.27
向多指机器人教授灵巧性一直是机器人学领域的一项长期挑战。该领域最突出的工作集中在学习控制器或策略,这些控制器或策略对视觉观察或从视觉得出的状态估计进行操作。然而,这种方法在需要对接触力或手本身遮挡的物体进行推理的细粒度操作任务上表现不佳。
123 0
每日学术速递3.27
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.15
数据驱动是深度学习算法最具标志性的特性之一。ImageNet 的诞生推动了计算机视觉“从大规模数据中学习”的显着趋势。在 ImageNet 上进行预训练以获得丰富的通用表征已被证明有利于各种 2D 视觉任务,并成为 2D 视觉的标准。
158 0
|
机器学习/深度学习 自然语言处理 计算机视觉
每日学术速递4.24
自然界充满了复杂的系统,其特征是其组成部分之间存在错综复杂的关系:从社交网络中个体之间的社交互动到蛋白质中原子之间的静电相互作用。拓扑深度学习 (TDL) 提供了一个综合框架来处理与这些系统相关的数据并从中提取知识,例如预测个人所属的社会社区或预测蛋白质是否可以成为药物开发的合理目标。
116 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递3.10
本文介绍了扩散策略,这是一种通过将机器人的视觉运动策略表示为条件去噪扩散过程来生成机器人行为的新方法。我们对来自 4 个不同机器人操作基准的 11 个不同任务的扩散策略进行基准测试,发现它始终优于现有的最先进的机器人学习方法,平均提高 46.9%。扩散策略学习动作分布得分函数的梯度,并在推理过程中通过一系列随机朗之万动力学步骤针对该梯度场进行迭代优化。
127 0
|
自然语言处理 计算机视觉
每日学术速递3.6
本文描述了一种使用与目标数据集不一定相关的多个源数据集进行语义分割的域自适应训练方法。我们通过整合来自多个源模型的预测对象概率,提出了一种软伪标签生成方法。每个源模型的预测基于源数据集和目标数据集之间的估计域相似性进行加权,以强调在与目标更相似的源上训练的模型的贡献,并生成合理的伪标签。
116 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.21
大型语言模型(LLM)在各种具有涌现能力的自然语言处理任务中取得了显着进步。然而,他们面临着固有的局限性,例如无法访问最新信息、无法使用外部工具或进行精确的数学推理。在本文中,我们介绍了 Chameleon,这是一种即插即用的组合推理框架,可增强 LLM 以帮助应对这些挑战。
157 0
|
机器学习/深度学习 自然语言处理 vr&ar
每日学术速递3.14
Vision Transformers 通过将图像切片成补丁来将图像转换为序列。这些补丁的大小控制着速度/准确性的权衡,较小的补丁会以更高的计算成本导致更高的准确性,但更改补丁大小通常需要重新训练模型。在本文中,我们证明了在训练时简单地随机化补丁大小会导致一组权重在广泛的补丁大小范围内表现良好,从而可以在部署时根据不同的计算预算定制模型。
138 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递5.4
尽管越来越多地采用混合现实和交互式 AI 代理,但这些系统在看不见的环境中生成高质量的 2D/3D 场景仍然具有挑战性。通常的做法需要部署一个 AI 代理来收集大量数据,以便为每个新任务进行模型训练。对于许多领域来说,这个过程是昂贵的,甚至是不可能的。
136 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.13
现有的视频系统识别方法(估计物体的物理参数)假设已知物体的几何形状。这排除了它们在对象几何形状复杂或未知的绝大多数场景中的适用性。在这项工作中,我们的目标是从一组多视图视频中识别表征物理系统的参数,而无需对对象几何或拓扑进行任何假设。为此,我们提出了“物理增强连续体神经辐射场”(PAC-NeRF)
175 0
|
机器学习/深度学习 自然语言处理 数据可视化
每日学术速递3.31
我们提出了 LLaMA-Adapter,这是一种轻量级自适应方法,可以有效地将 LLaMA 微调为指令跟随模型。使用 52K 自我指导演示,LLaMA-Adapter 仅在冻结的 LLaMA 7B 模型上引入 1.2M 可学习参数,并且在 8 个 A100 GPU 上进行微调的成本不到一小时。
171 0

热门文章

最新文章