每日学术速递5.11

简介: 网页一直是视觉语言和纯语言任务的丰富、可扩展的资源。然而,只有网页的一部分被保留:图像标题对、长文本文章或原始 HTML,永远不会全部放在一个地方。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion


3d943c59f495443f09acf633230f64e3.png

标题:扩散解释器:文本到图像稳定扩散的视觉解释

作者:Seongmin Lee, Benjamin Hoover, Hendrik Strobelt, Zijie J. Wang, ShengYun Peng

文章链接:https://arxiv.org/abs/2305.03509

项目代码:https://huggingface.co/papers/2305.03509

c3e5c9321ca0658f9dfbe5e5dc4d65ad.png

c4b7ffa03d7e5c9602c40d01559aa0d9.png

5bfda544a1b72e60c84e2def8a3012ee.png

a9efaf000feb747a46eebbe499ab6491.png

摘要:

       基于扩散的生成模型创建令人信服的图像的令人印象深刻的能力已经引起了全球的关注。然而,它们复杂的内部结构和操作往往使非专家难以理解。我们介绍了 Diffusion Explainer,这是第一个解释 Stable Diffusion 如何将文本提示转换为图像的交互式可视化工具。Diffusion Explainer 将 Stable Diffusion 复杂组件的视觉概览与其底层操作的详细解释紧密集成,使用户能够通过动画和交互元素在多个抽象级别之间流畅地转换。通过比较两个相关文本提示引导的图像表示在细化时间步上的演变,用户可以发现提示对图像生成的影响。Diffusion Explainer 在用户的 Web 浏览器中本地运行,无需安装或专用硬件,从而扩大了公众对现代 AI 技术的教育机会。

2.Composite Motion Learning with Task Control(SIGGRAPH 2023)

6b36f7eedbfe9efc5c023c6dfe8c91a6.png

标题:具有任务控制的复合运动学习

作者:Pei Xu, Xiumin Shang, Victor Zordan, Ioannis Karamouzas

文章链接:https://arxiv.org/abs/2305.03286

项目代码:https://github.com/xupei0610/CompositeMotion

69277ff35f784aab181a9905e7d2e5a3.png

782ddc97ec3127a3db9cbe108f2ecd0a.png

dcda4899de575103d6e569a9e0d1ea8b.png

34a38956ba6dcd9b69697dc84d672811.png

摘要:

       我们提出了一种用于物理模拟角色的复合和任务驱动运动控制的深度学习方法。与现有的使用强化学习模仿全身运动的数据驱动方法相比,我们通过在类似 GAN 的设置中利用多个鉴别器,同时并直接从多个参考运动中学习特定身体部位的解耦运动。在此过程中,不需要任何手动工作来生成用于学习的复合参考动作。相反,控制策略自行探索如何自动组合复合运动。我们进一步考虑了多个特定于任务的奖励,并训练了一个单一的、多目标的控制策略。为此,我们提出了一种新的多目标学习框架,该框架自适应地平衡来自多个源和多个目标导向控制目标的不同运动的学习。此外,由于复合动作通常是简单行为的增强,我们引入了一种样本有效的方法来以增量方式训练复合控制策略,我们将预训练的策略重用为元策略并训练一个合作策略以适应meta one 用于新的复合任务。我们展示了我们的方法在涉及复合运动模仿和多目标导向控制的各种具有挑战性的多目标任务中的适用性。

3.A Suite of Generative Tasks for Multi-Level Multimodal Webpage Understanding

d455f9236e4e211b98586b7465742197.png

标题:一套用于多级多模式网页理解的生成任务

作者:Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Geoff Brown, Bryan A. Plummer, Kate Saenko, Jianmo Ni, Mandy Guo

文章链接:https://arxiv.org/abs/2305.03668

项目代码:https://github.com/google-research-datasets/wit/blob/main/wikiweb2m.md

148b1183b2acdea8888471fb8ad076c1.png

3f05bc3e0e46cf51b7cf2f6611aacd96.png

5b2a85db230496fd62d4528f49c871b7.png

a524912ab5230abb69d823ec96c30900.png

177fd924fa84df466f9b996eb241d570.png

摘要:

       网页一直是视觉语言和纯语言任务的丰富、可扩展的资源。然而,只有网页的一部分被保留:图像标题对、长文本文章或原始 HTML,永远不会全部放在一个地方。网页任务因此很少受到关注,结构化图像文本数据也未得到充分利用。为了研究多模式网页理解,我们引入了 2M 页面的维基百科网页套件 (WikiWeb2M)。我们验证了它在三个生成任务上的效用:页面描述生成、部分摘要和上下文图像字幕。我们设计了一种新颖的注意力机制 Prefix Global,它选择最相关的图像和文本内容作为全局标记,以关注网页的其余部分以获取上下文。通过使用页面结构来分离这些标记,它的性能比全注意力更好,计算复杂度更低。实验表明,与之前工作的数据相比,来自 WikiWeb2M 的新注释提高了任务性能。我们还包括对序列长度、输入特征和模型大小的消融。

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递2.16
半监督目标检测 (SSOD) 已成功提高 R-CNN 系列和无锚检测器的性能。然而,one-stage anchor-based detectors 缺乏生成高质量或灵活伪标签的结构,导致 SSOD 中存在严重的不一致问题,例如 YOLOv5。在本文中,我们提出了高效教师框架,用于可扩展且有效的基于锚点的单阶段 SSOD 训练,由密集检测器、伪标签分配器和时代适配器组成
154 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.5
无论是通过从头到尾以固定分辨率处理视频,还是结合池化和缩小策略,现有的视频转换器都可以处理整个网络中的整个视频内容,而无需专门处理大部分冗余信息。在本文中,我们提出了一种 Supertoken Video Transformer (SVT),它结合了语义池模块 (SPM),根据视觉转换器的语义沿着视觉转换器的深度聚合潜在表示,从而减少视频输入中固有的冗余。
92 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.29
我们提出了一种将点云渲染为表面的新方法。所提出的方法是可区分的,不需要特定场景的优化。这种独特的功能支持开箱即用的表面法线估计、渲染房间尺度点云、逆向渲染和全局照明光线追踪。与专注于将点云转换为其他表示(例如曲面或隐式函数)的现有工作不同,我们的关键思想是直接推断光线与给定点云表示的底层表面的交点。
125 0
|
机器人
每日学术速递4.27
我们研究如何使用 Transformers 构建和训练用于机器人决策的空间表示。特别是,对于在各种环境中运行的机器人,我们必须能够快速训练或微调机器人感觉运动策略,这些策略对杂波具有鲁棒性、数据效率高,并且可以很好地泛化到不同的环境。
118 0
|
机器学习/深度学习 运维 自然语言处理
每日学术速递3.3
评估面部图像的质量对于以足够的准确性操作面部识别系统至关重要。人脸质量标准化的最新进展 (ISO/IEC WD 29794-5) 建议使用组件质量测量方法将人脸质量分解为各个因素,从而为操作员重新捕获低质量图像提供有价值的反馈。
119 0
|
机器学习/深度学习 机器人
每日学术速递2.23
本文探讨了动态系统中的离散形态对称性,这是生物学和机器人系统的主要特征。当系统的形态具有一个或多个对称平面时,它表现出形态对称性,描述了身体部位的重复和平衡分布。这些形态对称性意味着系统的动力学是对称的(或近似对称的),这进而在最优控制策略和所有与系统动态演化相关的本体感知和外感知测量中印记了对称性。
76 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.13
现有的视频系统识别方法(估计物体的物理参数)假设已知物体的几何形状。这排除了它们在对象几何形状复杂或未知的绝大多数场景中的适用性。在这项工作中,我们的目标是从一组多视图视频中识别表征物理系统的参数,而无需对对象几何或拓扑进行任何假设。为此,我们提出了“物理增强连续体神经辐射场”(PAC-NeRF)
175 0
|
机器学习/深度学习 自然语言处理 机器人
每日学术速递4.26
我们介绍了 CLaMP:对比语言-音乐预训练,它使用音乐编码器和文本编码器通过对比损失联合训练来学习自然语言和符号音乐之间的跨模态表示。为了预训练 CLaMP,我们收集了 140 万个音乐文本对的大型数据集。它采用文本丢失作为数据增强技术和条形修补来有效地表示音乐数据,从而将序列长度减少到不到 10%。此外,我们开发了一个掩码音乐模型预训练目标,以增强音乐编码器对音乐背景和结构的理解。
113 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.15
大规模视觉语言模型(例如 CLIP)学习强大的图像文本表示,这些表示已找到许多应用程序,从零镜头分类到文本到图像生成。尽管如此,它们通过提示解决新的判别任务的能力仍落后于大型语言模型,例如 GPT-3。在这里,我们探索视觉提示工程的想法,通过在图像空间而不是文本中进行编辑来解决分类以外的计算机视觉任务。
122 0
|
机器学习/深度学习 传感器 自然语言处理
每日学术速递4.23
神经辐射场 (NeRF) 能够以前所未有的视觉质量实现新颖的视图合成。然而,为了渲染逼真的图像,NeRF 需要对每个像素进行数百次深度多层感知器 (MLP) 评估。这是非常昂贵的,并且使实时渲染变得不可行,即使在强大的现代 GPU 上也是如此。
127 0

热门文章

最新文章