每日学术速递5.10

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 由于对各种可能的自然语言问题进行概括的挑战,基于知识库的问答被认为是一个难题。此外,不同知识库之间知识库模式项的异质性通常需要对不同知识库问答 (KBQA) 数据集进行专门培训。为了使用统一的免训练框架处理各种 KBQA 数据集的问题,我们提出了 KB-BINDER,它首次实现了对 KBQA 任务的少样本上下文学习

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理  

Subjects: cs.CV


1.ZipIt! Merging Models from Different Tasks without Training

981667b90b828dfea2449e56f5c61c57.png


标题:压缩它!无需训练即可合并来自不同任务的模型

作者:George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, Judy Hoffman

文章链接:https://arxiv.org/abs/2305.03053

5d981134284463a43b14947578c825cc.png

6a01eb37a9471016a5320d5b88d03a69.png

aa766f7f1e4920bdfacf276ecea2cd47.png

3b0647182d4495868f7ba143a85bc436.png

b03704b75d7a9cbd22de4768a290274f.png

2148cb51da1d3c67a2178fceef61eac9.png


摘要:

       典型的深度视觉识别模型能够执行他们接受过训练的一项任务。在这篇论文中,我们解决了一个极其困难的问题,即在没有任何额外训练的情况下,将具有不同初始化的完全不同的模型组合成一个多任务模型,每个模型解决一个单独的任务。模型合并的先前工作将一个模型置换到另一个模型的空间,然后将它们加在一起。虽然这适用于在同一任务上训练的模型,但我们发现这无法解释在不相交任务上训练的模型的差异。因此,我们介绍了“ZipIt!”,这是一种合并两个具有相同架构的任意模型的通用方法,它包含两个简单的策略。首先,为了解决模型之间不共享的特征,我们扩展了模型合并问题,通过定义一个通用的“zip”操作,额外允许在每个模型中合并特征。其次,我们添加了对部分压缩模型直到指定层的支持,自然地创建了一个多头模型。我们发现这两个变化相结合,比之前的工作有了惊人的 20-60% 的改进,使得在不相交任务上训练的模型的合并变得可行。

2.Automatic Prompt Optimization with "Gradient Descent" and Beam Search(CVPR 2023)

2d4ce96293e95d6bd93eabea9049d7e6.png

标题:使用“梯度下降”和波束搜索进行自动提示优化

作者:Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, Michael Zeng

文章链接:https://arxiv.org/abs/2305.03495

e1a95abd2e40e4cceb48f47fee315f6c.png

bfda5faeea2a653637a784e18837550a.png

b9bfd818bea037e04f35c42b3bb7c4d5.png

a3f117a7b334b74c019b3493f1191521.png

摘要:

       大型语言模型 (LLM) 作为通用代理已显示出令人印象深刻的性能,但它们的能力仍然高度依赖于通过繁重的试错工作手写的提示。我们针对此问题提出了一个简单且非参数的解决方案,即自动提示优化 (APO),它受数值梯度下降的启发,可以自动改进提示,假设可以访问训练数据和 LLM API。该算法使用小批量数据来形成批评当前提示的自然语言“梯度”。然后通过在梯度的相反语义方向上编辑提示,将梯度“传播”到提示中。这些梯度下降步骤由波束搜索和强盗选择程序引导,可显着提高算法效率。三个基准 NLP 任务和 LLM 越狱检测的新问题的初步结果表明,自动提示优化可以胜过之前的提示编辑技术,并通过使用数据将模糊的任务描述重写为更精确,将初始提示的性能提高多达 31%注释说明。

3.Few-shot In-context Learning for Knowledge Base Question Answering (ACL 2023)

f3b45e8afa0ddb61723c3f9d00404488.png

标题:用于知识库问答的少样本上下文学习

作者:Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, Wenhu Chen

文章链接:https://arxiv.org/abs/2305.01750

8cc59bdc618ed22e6ef9259a74309e14.png

303d1c2f8886413388039d1ab14efb3a.png

7aa3dd6ca38e048516f95117aecf6b8f.png

8615d559334cf6d98b421febc8daa08c.png

摘要:

       由于对各种可能的自然语言问题进行概括的挑战,基于知识库的问答被认为是一个难题。此外,不同知识库之间知识库模式项的异质性通常需要对不同知识库问答 (KBQA) 数据集进行专门培训。为了使用统一的免训练框架处理各种 KBQA 数据集的问题,我们提出了 KB-BINDER,它首次实现了对 KBQA 任务的少样本上下文学习。首先,KB-BINDER利用像Codex这样的大型语言模型,通过模仿一些演示,生成逻辑形式作为特定问题的草稿。其次,KB-BINDER以知识库为基础,将生成的草稿与BM25分数匹配的可执行草稿进行绑定。四个公共异构 KBQA 数据集的实验结果表明,KB-BINDER 仅需少量上下文演示即可实现强大的性能。尤其是在 GraphQA 和 3-hop MetaQA 上,KB-BINDER 甚至可以超越最先进的训练模型。在 GrailQA 和 WebQSP 上,我们的模型也与其他经过全面训练的模型不相上下。我们相信 KB-BINDER 可以作为未来研究的重要基线。我们的代码可在此 https URL 上获得。

目录
相关文章
|
机器学习/深度学习 机器人
每日学术速递2.23
本文探讨了动态系统中的离散形态对称性,这是生物学和机器人系统的主要特征。当系统的形态具有一个或多个对称平面时,它表现出形态对称性,描述了身体部位的重复和平衡分布。这些形态对称性意味着系统的动力学是对称的(或近似对称的),这进而在最优控制策略和所有与系统动态演化相关的本体感知和外感知测量中印记了对称性。
76 0
|
机器学习/深度学习 自然语言处理 安全
每日学术速递2.24
在本技术报告中,我们介绍了百度 KDD 杯 2022 空间动态风电功率预测挑战赛的解决方案。风能是一种快速增长的清洁能源。准确的风电功率预测对于电网稳定和供应安全至关重要。为此,主办方提供了包含134台风电机组历史数据的风电数据集,并发起百度KDD Cup 2022,以检验当前风电预测方法的局限性。
177 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递3.17
怪异、不寻常和离奇的图像激起观察者的好奇心,因为它们挑战常识。例如,在 2022 年世界杯期间发布的一张图片描绘了著名足球明星莱昂内尔·梅西和克里斯蒂亚诺·罗纳尔多下棋,这调皮地违反了我们对他们的比赛应该在足球场上进行的预期。人类可以轻松识别和解读这些非常规图像,但 AI 模型也能做到吗?我们介绍了 WHOOPS!,这是一个新的视觉常识数据集和基准。
138 0
|
传感器 机器学习/深度学习 自然语言处理
每日学术速递2.22
时空数据挖掘在空气质量监测、人群流动建模和气候预测中发挥着重要作用。然而,由于传感器故障或传输丢失,现实场景中最初收集的时空数据通常是不完整的。时空插补旨在根据观测值及其潜在的时空依赖性来填充缺失值。
122 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递4.14
我们提出了 ImageReward——第一个通用的文本到图像人类偏好奖励模型——来解决生成模型中的各种普遍问题,并使它们与人类价值观和偏好保持一致。它的训练基于我们的系统注释管道,涵盖评级和排名组件,收集了迄今为止 137k 专家比较的数据集。
150 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递2.16
半监督目标检测 (SSOD) 已成功提高 R-CNN 系列和无锚检测器的性能。然而,one-stage anchor-based detectors 缺乏生成高质量或灵活伪标签的结构,导致 SSOD 中存在严重的不一致问题,例如 YOLOv5。在本文中,我们提出了高效教师框架,用于可扩展且有效的基于锚点的单阶段 SSOD 训练,由密集检测器、伪标签分配器和时代适配器组成
154 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递5.3
用任意语音音频生成说话人肖像是数字人和虚拟世界领域的一个关键问题。一种现代的说话人脸生成方法有望实现通用的音频-嘴唇同步、良好的视频质量和高系统效率的目标。
206 0
|
机器学习/深度学习 编解码 人工智能
每日学术速递5.5
我们介绍了多尺度多视图视觉变换器 (MMViT),它将多尺度特征图和多视图编码引入到变换器模型中。我们的模型对输入信号的不同视图进行编码,并构建多个通道分辨率特征阶段
158 0
|
机器学习/深度学习 自然语言处理 安全
每日学术速递2.27
视觉知识感知问答 (Knowledge-aware question answering, KAQA) 要求模型通过知识库回答问题,这对于开放域 QA 和特定域 QA 都是必不可少的,尤其是当仅靠语言模型无法提供所需的所有知识时。尽管最近的 KAQA 系统倾向于整合来自预训练语言模型 (PLM) 的语言知识和来自知识图 (KG) 的事实知识来回答复杂问题,但在有效融合来自 PLM 和 KG 的表征方面存在瓶颈,因为(i) 它们之间的语义和分布差距,以及 (ii) 对两种模式提供的知识进行联合推理的困难。
114 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.9
错误信息已成为一个紧迫的问题。网络上广泛存在视觉和文本形式的虚假媒体。虽然已经提出了各种 deepfake 检测和文本假新闻检测方法,但它们仅设计用于基于二进制分类的单模态伪造,更不用说分析和推理跨不同模态的细微伪造痕迹。
126 0

热门文章

最新文章