每日学术速递5.2

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 现有的深度视频模型受限于特定任务、固定的输入输出空间和较差的泛化能力,难以在真实场景中部署。在本文中,我们提出了我们对多模态和多功能视频理解的愿景,并提出了一个原型系统 \system

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理  


Subjects: cs.CV


1.DataComp: In search of the next generation of multimodal datasets

a1f34374dc8a75cec590f411d48b869c.png

标题:DataComp:寻找下一代多模态数据集

作者:Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman

文章链接:https://arxiv.org/abs/2304.14108

项目代码:https://github.com/mlfoundations/datacomp

26d1c1a2b74adbf218a56757be5020c3.png

e947e807a9e0cf82486ea4ed1cbce653.png

f3ccf03bd185cd4f0097bb20f31aa3b1.png

b7ceadae61c39627b4d093eb885c5cd8.png

摘要:

       大型多模态数据集在最近的突破中发挥了重要作用,例如 CLIP、Stable Diffusion 和 GPT-4。同时,数据集很少受到与模型架构或训练算法相同的研究关注。为了解决机器学习生态系统中的这一缺点,我们引入了 DataComp,这是一种基准,其中训练代码是固定的,研究人员通过提出新的训练集来进行创新。我们为数据集实验提供了一个测试平台,该实验以来自 Common Crawl 的 12.8B 图像文本对的新候选池为中心。我们基准测试的参与者设计新的过滤技术或管理新的数据源,然后通过运行我们标准化的 CLIP 训练代码并在 38 个下游测试集上进行测试来评估他们的新数据集。我们的基准测试由多个尺度组成,具有四个候选池大小和相关的计算预算,范围从训练期间看到的 12.8M 到 12.8B 个样本。这种多尺度设计有助于研究尺度趋势,并使具有不同资源的研究人员可以访问基准。我们的基线实验表明,DataComp 工作流是改进多模态数据集的一种很有前途的方法。我们介绍了 DataComp-1B,这是一个通过对 12.8B 候选池应用简单过滤算法创建的数据集。由此产生的 1.4B 子集使 CLIP ViT-L/14 能够在 ImageNet 上从头开始训练到 79.2% 的零样本准确率。我们新的 ViT-L/14 模型比在 LAION-2B 上训练的更大的 ViT-g/14 高出 0.7 个百分点,同时需要的训练计算减少 9 倍。我们的表现也比 OpenAI 的 CLIP ViT-L/14 高出 3.7 个百分点,它是使用与我们的模型相同的计算预算进行训练的。这些收益突出了通过精心策划训练集来提高模型性能的潜力。我们将 DataComp-1B 视为第一步,并希望 DataComp 为下一代多模式数据集铺平道路。

2.Text-to-Audio Generation using Instruction-Tuned LLM and Latent Diffusion Model

07271cefd6f75aa35c0623efcfa10e0e.png

标题:使用指令调整的 LLM 和潜在扩散模型生成文本到音频

作者:Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, Soujanya Poria

文章链接:https://arxiv.org/abs/2304.13731

项目代码:https://github.com/declare-lab/tango

89decd3191736ab99730b9a4a182f8fc.png

4ee4c9634b0568b2a02a19ad40937c75.png

9df0340e2a3f77feecad7476a961b8f0.png

摘要:

       最近大型语言模型 (LLM) 的巨大规模允许许多有趣的特性,例如基于指令和思想链的微调,这在许多自然语言处理中显着提高了零样本和少样本性能(NLP) 任务。受这些成功的启发,我们采用这种指令调优的 LLM Flan-T5 作为文本编码器,用于文本到音频 (TTA) 生成——目标是根据文本描述生成音频的任务。TTA 的先前工作要么预训练联合文本音频编码器,要么使用非指令调优模型,例如 T5。因此,尽管在小 63 倍的数据集上训练 LDM 并保持文本编码器冻结。这种改进也可能归因于采用基于音频压力水平的混音来增强训练集,而之前的方法采用随机混音。

3.ChatVideo: A Tracklet-centric Multimodal and Versatile Video Understanding System

6c72ee9c819aa9ba222cd68fdcaeef18.png

标题:ChatVideo:以 Tracklet 为中心的多模态多功能视频理解系统

作者:Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai, Lu Yuan, Zuxuan Wu, Yu-Gang Jiang

文章链接:https://arxiv.org/abs/2304.14407

项目代码:https://www.wangjunke.info/ChatVideo/

9a3a230801c797f53d6cc0a6bfcb0fc0.png

ac1bb9ccc1a291d785a67b48eb119bc2.png

f93e89c59259b02fe2fb8152a394085b.png

0e20eaee84c24e340e5fdb9f73231d6a.png


摘要:

       现有的深度视频模型受限于特定任务、固定的输入输出空间和较差的泛化能力,难以在真实场景中部署。在本文中,我们提出了我们对多模态和多功能视频理解的愿景,并提出了一个原型系统 \system。我们的系统建立在以 tracklet 为中心的范例之上,它将 tracklet 视为基本视频单元,并使用各种视频基础模型 (ViFM) 来注释它们的属性,例如外观、运动等。所有检测到的轨迹都存储在数据库中,并通过数据库管理器与用户交互。我们对不同类型的野外视频进行了广泛的案例研究,证明了我们的方法在回答各种视频相关问题方面的有效性。

目录
相关文章
|
机器学习/深度学习 自然语言处理 机器人
每日学术速递3.27
向多指机器人教授灵巧性一直是机器人学领域的一项长期挑战。该领域最突出的工作集中在学习控制器或策略,这些控制器或策略对视觉观察或从视觉得出的状态估计进行操作。然而,这种方法在需要对接触力或手本身遮挡的物体进行推理的细粒度操作任务上表现不佳。
123 0
每日学术速递3.27
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.5
无论是通过从头到尾以固定分辨率处理视频,还是结合池化和缩小策略,现有的视频转换器都可以处理整个网络中的整个视频内容,而无需专门处理大部分冗余信息。在本文中,我们提出了一种 Supertoken Video Transformer (SVT),它结合了语义池模块 (SPM),根据视觉转换器的语义沿着视觉转换器的深度聚合潜在表示,从而减少视频输入中固有的冗余。
92 0
|
机器学习/深度学习 编解码 人工智能
每日学术速递5.5
我们介绍了多尺度多视图视觉变换器 (MMViT),它将多尺度特征图和多视图编码引入到变换器模型中。我们的模型对输入信号的不同视图进行编码,并构建多个通道分辨率特征阶段
158 0
|
机器学习/深度学习 传感器 自然语言处理
每日学术速递4.23
神经辐射场 (NeRF) 能够以前所未有的视觉质量实现新颖的视图合成。然而,为了渲染逼真的图像,NeRF 需要对每个像素进行数百次深度多层感知器 (MLP) 评估。这是非常昂贵的,并且使实时渲染变得不可行,即使在强大的现代 GPU 上也是如此。
127 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.1
本文介绍了一种名为 F²-NeRF (Fast-Free-NeRF) 的新型基于网格的 NeRF,用于新型视图合成,它支持任意输入摄像机轨迹,并且只需几分钟的训练时间。现有的基于网格的快速 NeRF 训练框架,如 Instant-NGP、Plenoxels、DVGO 或 TensoRF,主要针对有界场景设计,并依靠空间扭曲来处理无界场景。现有的两种广泛使用的空间扭曲方法仅针对前向轨迹或 360 度以对象为中心的轨迹而设计,无法处理任意轨迹。
152 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.30
具有指令微调的大型语言模型 (LLM) 展示了卓越的生成能力。然而,这些模型是资源密集型的。为了缓解这个问题,我们探索从指令调整的 LLM 中提炼知识到更小的 LLM。为此,我们基于现有指令和新生成的指令精心开发了大量 2.58M 指令集。
124 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递3.23
我们介绍了 Zero-1-to-3,这是一个框架,用于在给定单个 RGB 图像的情况下更改对象的相机视点。为了在这种欠约束的环境中执行新的视图合成,我们利用了大规模扩散模型了解自然图像的几何先验。我们的条件扩散模型使用合成数据集来学习相对相机视点的控制,这允许在指定的相机变换下生成同一对象的新图像。
96 0
|
传感器 机器学习/深度学习 自然语言处理
每日学术速递2.22
时空数据挖掘在空气质量监测、人群流动建模和气候预测中发挥着重要作用。然而,由于传感器故障或传输丢失,现实场景中最初收集的时空数据通常是不完整的。时空插补旨在根据观测值及其潜在的时空依赖性来填充缺失值。
122 0
|
机器学习/深度学习 编解码 人工智能
每日学术速递4.28
神经辐射场 (NeRF) 在 3D 场景建模和合成高保真新颖视图方面取得了显著成功。然而,现有的基于 NeRF 的方法更侧重于充分利用图像分辨率来生成新颖的视图,而较少考虑在有限的输入分辨率下生成细节。类似于图像超分辨率的广泛使用
189 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.8
扩散模型(DM)已成为生成模型的新趋势,并展示了强大的条件合成能力。其中,在大规模图像文本对上预训练的文本到图像扩散模型可通过可定制的提示高度控制。与专注于低级属性和细节的无条件生成模型不同,由于视觉语言预训练,文本到图像扩散模型包含更多高级知识。在本文中,我们提出了 VPD(具有预训练扩散模型的视觉感知),这是一种在视觉感知任务中利用预训练文本到图像扩散模型的语义信息的新框架。我们没有在基于扩散的管道中使用预训练的去噪自动编码器,而是简单地将其用作主干,旨在研究如何充分利用所学知识。
122 0

热门文章

最新文章