每日学术速递5.1

简介: 大型语言模型 (LLM) 在各种开放式任务中展示了令人印象深刻的零样本能力,而最近的研究还探索了使用 LLM 进行多模态生成。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.Putting People in Their Place: Affordance-Aware Human Insertion into Scenes

588264bab98f488884d46aeb20ff0449.png

标题:把人放在他们的位置:可供感知的人类插入场景

作者:Sumith Kulal, Tim Brooks, Alex Aiken, Jiajun Wu, Jimei Yang, Jingwan Lu, Alexei A. Efros, Krishna Kumar Singh

文章链接:https://arxiv.org/abs/2304.14406

项目代码:https://sumith1896.github.io/affordance-insertion/

e12283209c8cad0e7435ad71312720bb.png

9cdd814819111b9cd23f000f92ab92c3.png

0068f2c881aee72dc20e954238c77306.png

摘要:

       我们通过提出一种将人物实际插入场景的方法来研究推断场景可供性的问题。给定一个带有标记区域的场景图像和一个人的图像,我们将人插入到场景中,同时尊重场景可供性。我们的模型可以在给定场景上下文的情况下推断出一组逼真的姿势,重新摆出参考人物的姿势,并协调构图。我们通过学习在视频剪辑中重新摆姿势,以自我监督的方式设置任务。我们在 240 万个视频片段的数据集上训练了一个大规模扩散模型,该模型在尊重场景上下文的同时产生不同的合理姿势。鉴于学习到的人景组合,我们的模型还可以在没有条件的情况下在提示时产生真实的人物和场景的幻觉,并且还可以进行交互式编辑。定量评估表明,与之前的工作相比,我们的方法合成了更逼真的人类外观和更自然的人景交互。

2.Motion-Conditioned Diffusion Model for Controllable Video Synthesis

6d7258361290b13baa40da32a941b9b6.png

标题:用于可控视频合成的运动条件扩散模型

作者:Chung-Ching Lin, Jiang Wang, Kun Luo, Kevin Lin, Linjie Li, Lijuan Wang, Zicheng Liu

文章链接:https://arxiv.org/abs/2304.14404

项目代码:https://tsaishien-chen.github.io/MCDiff/

30c78d9a3710ed2514908c79524805a8.png

c0be10624ebd35edda6090788333d175.png

7386a894d3f64dd0c5a6c03bd6d3c02b.png

8430a1fd062e7067b3583bf4262cba32.png

摘要:

       扩散模型的最新进展极大地提高了合成内容的质量和多样性。为了利用扩散模型的表达能力,研究人员探索了各种可控机制,使用户能够直观地指导内容合成过程。尽管最近的努力主要集中在视频合成上,但一直缺乏有效的方法来控制和描述所需的内容和动作。为了应对这一差距,我们引入了 MCDiff,这是一种条件扩散模型,它从起始图像帧和一组笔画生成视频,允许用户指定合成的预期内容和动态。为了解决稀疏运动输入的歧义并获得更好的合成质量,MCDiff 首先利用流完成模型基于视频帧的语义理解和稀疏运动控制来预测密集视频运动。然后,扩散模型合成高质量的未来帧以形成输出视频。我们定性和定量地表明,MCDiff 在笔触引导的可控视频合成中实现了最先进的视觉质量。MPII Human Pose 的额外实验进一步展示了我们的模型在不同内容和运动合成方面的能力。

3.mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality

ba847c6000cee045375197d02df6a31d.png

标题:mPLUG-Owl:模块化赋予大型语言模型多模态能力

作者:Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi, Yaya Shi

文章链接:https://arxiv.org/abs/2304.14178

项目代码:https://www.modelscope.cn/studios/damo/mPLUG-Owl

909735eeda848ebca964845f8da8ef86.png

03e5d927dae56278663c614c06a89cba.png

5d1e3d91393d76063b02b5bef8966ff6.png

4d43657f4e6a512298118847aa92a6cb.png

摘要:

       大型语言模型 (LLM) 在各种开放式任务中展示了令人印象深刻的零样本能力,而最近的研究还探索了使用 LLM 进行多模态生成。在这项研究中,我们介绍了 mPLUG-Owl,这是一种新颖的训练范式,通过基础 LLM、视觉知识模块和视觉抽象模块的模块化学习,为 LLM 配备多模态能力。这种方法可以支持多种模态,并通过模态协作促进多样化的单模态和多模态能力。mPLUG-Owl 的训练范式涉及图像和文本对齐的两阶段方法,它在 LLM 的帮助下学习视觉知识,同时保持甚至提高 LLM 的生成能力。在第一阶段,视觉知识模块和抽象模块使用冻结的 LLM 模块进行训练,以对齐图像和文本。在第二阶段,使用纯语言和多模态监督数据集通过冻结视觉知识模块联合微调 LLM 上的低秩适应 (LoRA) 模块和抽象模块。我们精心构建了一个视觉相关的指令评估集 OwlEval。实验结果表明,我们的模型优于现有的多模态模型,展示了 mPLUG-Owl 令人印象深刻的指令和视觉理解能力、多轮对话能力和知识推理能力。此外,我们观察到一些意想不到且令人兴奋的能力,例如多图像关联和场景文本理解,这使得将其用于更难的真实场景(例如仅视觉文档理解)成为可能。我们的代码、预训练模型、指令调整模型和评估集可在这个 https URL 获得。此 https URL 提供在线演示。

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.3
最近在语言引导图像生成领域取得的突破取得了令人瞩目的成就,能够根据用户指令创建高质量和多样化的图像。尽管合成性能令人着迷,但当前图像生成模型的一个重大限制是它们在图像中生成连贯文本的能力不足,特别是对于像汉字这样的复杂字形结构。为了解决这个问题,我们引入了 GlyphDraw,这是一个通用的学习框架,旨在赋予图像生成模型生成嵌入连贯文本的图像的能力。据我们所知,这是图像合成领域第一个解决汉字生成问题的工作。
162 0
每日学术速递4.3
|
机器学习/深度学习 自然语言处理 机器人
每日学术速递3.27
向多指机器人教授灵巧性一直是机器人学领域的一项长期挑战。该领域最突出的工作集中在学习控制器或策略,这些控制器或策略对视觉观察或从视觉得出的状态估计进行操作。然而,这种方法在需要对接触力或手本身遮挡的物体进行推理的细粒度操作任务上表现不佳。
131 0
每日学术速递3.27
|
机器学习/深度学习 自然语言处理 安全
每日学术速递2.24
在本技术报告中,我们介绍了百度 KDD 杯 2022 空间动态风电功率预测挑战赛的解决方案。风能是一种快速增长的清洁能源。准确的风电功率预测对于电网稳定和供应安全至关重要。为此,主办方提供了包含134台风电机组历史数据的风电数据集,并发起百度KDD Cup 2022,以检验当前风电预测方法的局限性。
199 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递4.14
我们提出了 ImageReward——第一个通用的文本到图像人类偏好奖励模型——来解决生成模型中的各种普遍问题,并使它们与人类价值观和偏好保持一致。它的训练基于我们的系统注释管道,涵盖评级和排名组件,收集了迄今为止 137k 专家比较的数据集。
161 0
|
机器学习/深度学习 自然语言处理 计算机视觉
每日学术速递3.21
随着神经辐射场 (NeRFs) 的引入,新颖的视图合成最近取得了巨大飞跃。NeRF 的核心是提出每个 3D 点都可以发出辐射,从而允许使用可区分的体积渲染进行视图合成。虽然神经辐射场可以准确地表示用于计算图像渲染的 3D 场景,但 3D 网格仍然是大多数计算机图形和模拟管道支持的主要场景表示,支持实时渲染和基于物理的模拟等任务。
144 0
|
SQL 机器学习/深度学习 自然语言处理
每日学术速递3.22
我们介绍了一种新颖的方法,通过对一种或多种字母字体进行风格化来自动生成艺术排版,以直观地传达输入词的语义,同时确保输出保持可读性。为了解决我们手头任务的各种挑战,包括相互冲突的目标(艺术风格化与易读性)、缺乏基本事实和巨大的搜索空间,我们的方法利用大型语言模型来桥接文本和视觉图像以进行风格化,并建立一个无监督的具有扩散模型骨干的生成模型。
114 0
|
机器学习/深度学习 自然语言处理 物联网
每日学术速递4.6
大型语言模型 (LLM)(如 GPT-3 和 ChatGPT)的成功导致开发了许多具有成本效益且易于访问的替代方案,这些替代方案是通过使用特定于任务的数据(例如,ChatDoctor)微调开放访问 LLM 创建的) 或指令数据(例如,Alpaca)。在各种微调方法中,基于适配器的参数高效微调(PEFT)无疑是最吸引人的话题之一
159 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递3.17
怪异、不寻常和离奇的图像激起观察者的好奇心,因为它们挑战常识。例如,在 2022 年世界杯期间发布的一张图片描绘了著名足球明星莱昂内尔·梅西和克里斯蒂亚诺·罗纳尔多下棋,这调皮地违反了我们对他们的比赛应该在足球场上进行的预期。人类可以轻松识别和解读这些非常规图像,但 AI 模型也能做到吗?我们介绍了 WHOOPS!,这是一个新的视觉常识数据集和基准。
175 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递5.7
我们考虑重建从立体相机观察到的动态场景的问题。大多数现有的立体深度方法独立处理不同的立体帧,导致时间上不一致的深度预测。时间一致性对于身临其境的 AR 或 VR 场景尤为重要,在这些场景中,闪烁会大大降低用户体验。我们提出了 DynamicStereo,这是一种基于变换器的新型架构,用于估计立体视频的视差。
125 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.9
错误信息已成为一个紧迫的问题。网络上广泛存在视觉和文本形式的虚假媒体。虽然已经提出了各种 deepfake 检测和文本假新闻检测方法,但它们仅设计用于基于二进制分类的单模态伪造,更不用说分析和推理跨不同模态的细微伪造痕迹。
146 0