每日学术速递4.24

简介: 自然界充满了复杂的系统,其特征是其组成部分之间存在错综复杂的关系:从社交网络中个体之间的社交互动到蛋白质中原子之间的静电相互作用。拓扑深度学习 (TDL) 提供了一个综合框架来处理与这些系统相关的数据并从中提取知识,例如预测个人所属的社会社区或预测蛋白质是否可以成为药物开发的合理目标。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.Collaborative Diffusion for Multi-Modal Face Generation and Editing(CVPR 2023)


ec3a5f5dbd1b232d2e6174c72cd57415.png


标题:多模态人脸生成和编辑的协同扩散


作者:Ziqi Huang, Kelvin C.K. Chan, Yuming Jiang, Ziwei Liu

文章链接:https://arxiv.org/abs/2304.10530

项目代码:https://github.com/ziqihuangg/Collaborative-Diffusion

40acc3cf7ac96cc2a9d026641ab16cf7.png

b9136f1961a5f5d5962def586cfa6633.png

f0165f1c1b012e48f0a89658d85d4d4d.png

b362182dd598fd1ad5b6412bf4d072f1.png

9c0578351cc0de773923cde608ca53ab.png


摘要:

       扩散模型最近作为一种强大的生成工具出现。尽管取得了很大进展,但现有的扩散模型主要关注单模态控制,即扩散过程仅由一种条件模态驱动。为了进一步释放用户的创造力,希望模型能够同时通过多种模式进行控制,例如,通过描述年龄(文本驱动)来生成和编辑面部,同时绘制面部形状(面具驱动)。在这项工作中,我们提出了协作扩散,其中预先训练的单模态扩散模型协作以实现多模态人脸生成和编辑而无需重新训练。我们的主要见解是,由不同模式驱动的扩散模型在潜在的去噪步骤方面具有内在的互补性,可以建立双边联系。具体来说,我们提出了动态扩散器,这是一种元网络,它通过预测每个预训练单模态模型的时空影响函数来自适应幻觉多模态去噪步骤。Collaborative Diffusion 不仅协作了单模态扩散模型的生成能力,而且还集成了多个单模态操作来执行多模态编辑。广泛的定性和定量实验证明了我们的框架在图像质量和条件一致性方面的优越性。

2.Stochastic Interpolants: A Unifying Framework for Flows and Diffusions

e5a258150c1968e795750c1aad5aa6e4.png

标题:随机插值:流动和扩散的统一框架

作者:Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden

文章链接:https://arxiv.org/abs/2303.08797

项目代码:https://github.com/microsoft/AdaM

e30443c69c8a58552e1e526fc9ce7e5d.png

8e5dc7dc7e175b8898e4782747d44679.png

de103c8aa23bea9496aae47ffd3c675e.png

13dbd7d5ff5bfdf9774ccaf56c145ab0.png

3bb77b834ccf9ef53ca784a3b80bb925.png

摘要:

       介绍了一类统一基于流和基于扩散的方法的生成模型。这些模型扩展了 Albergo & Vanden-Eijnden (2023) 中提出的框架,允许使用称为“随机插值”的一大类连续时间随机过程在有限时间内精确地桥接任意两个任意概率密度函数。这些插值是通过将来自两个规定密度的数据与一个以灵活方式塑造桥梁的附加潜在变量相结合而构建的。随机插值的时间相关概率密度函数被证明满足一阶传输方程以及一系列具有可调扩散的前向和后向 Fokker-Planck 方程。考虑到单个样本的时间演变,这种观点立即导致基于概率流方程或具有可调噪声水平的随机微分方程的确定性和随机生成模型。进入这些模型的漂移系数是时间相关的速度场,其特征是简单二次目标函数的独特最小值,其中之一是插值密度得分的新目标。值得注意的是,我们表明,这些二次目标的最小化可以控制我们建立在随机动力学基础上的任何生成模型的可能性。相比之下,我们确定基于确定性动力学的生成模型还必须控制目标和模型之间的 Fisher 散度。我们还构建了基于插值的生成模型的似然和交叉熵的估计量,讨论了与其他随机桥的联系,并证明了在对插值进行显式优化时,此类模型可以恢复两个目标密度之间的薛定谔桥。

Subjects: cs.LG


3.Architectures of Topological Deep Learning: A Survey on Topological Neural Networks

d340ef5d47878347501b51e700dc7fa6.png

标题:拓扑深度学习的架构:拓扑神经网络综述

作者:Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, Nina Miolane

文章链接:https://arxiv.org/abs/2304.10031

项目代码:https://github.com/awesome-tnns/awesome-tnns

c34352b2a3a3481d48aa8fb0a4684ae8.png

77e4ec533c00947473a9573853e43bb6.png

4fb3592e617f6a373ad51840aae466a2.png

0cadcadda6e7a28ba65f396b01cfcbb6.png

249bb84f92f7ba15312b1ffea2b3fc75.png

cea356ce86766cc8ae7194c5cf01c2a7.png

摘要:

       自然界充满了复杂的系统,其特征是其组成部分之间存在错综复杂的关系:从社交网络中个体之间的社交互动到蛋白质中原子之间的静电相互作用。拓扑深度学习 (TDL) 提供了一个综合框架来处理与这些系统相关的数据并从中提取知识,例如预测个人所属的社会社区或预测蛋白质是否可以成为药物开发的合理目标。TDL 已经展示了理论和实践优势,有望在应用科学及其他领域取得突破。然而,TDL 文献的快速增长也导致拓扑神经网络 (TNN) 体系结构的符号和语言缺乏统一。这对在现有工作的基础上进行构建以及将 TNN 部署到新的现实世界问题中构成了真正的障碍。为了解决这个问题,我们提供了一个易于理解的 TDL 介绍,并使用统一的数学和图形符号来比较最近发布的 TNN。通过对 TDL 新兴领域的直观和批判性审查,我们提取了对当前挑战和未来发展令人兴奋的机会的宝贵见解。

目录
相关文章
|
4月前
|
JSON API 数据安全/隐私保护
农业银行模拟器,工商建设邮政中国银行,虚拟余额生成模拟器
这个银行模拟系统包含三个主要模块:核心银行账户逻辑、图形用户界面和REST API接口
|
传感器 人工智能 算法
AI在农业中的应用:精准农业的发展
随着科技的发展,人工智能(AI)在农业领域的应用日益广泛,尤其在精准农业方面取得了显著成效。精准农业通过GPS、GIS、遥感技术和自动化技术,实现对农业生产过程的精确监测和控制,提高产量和品质,降低成本和环境影响。AI在作物生长监测、气候预测、智能农机、农产品品质检测和智能灌溉等方面发挥重要作用,推动农业向智能化、高效化和可持续化方向发展。尽管面临技术集成、数据共享等挑战,但未来前景广阔。
1514 5
|
存储 SQL 缓存
优化ClickHouse查询性能:最佳实践与调优技巧
【10月更文挑战第26天】在大数据分析领域,ClickHouse 以其卓越的查询性能和高效的列式存储机制受到了广泛的关注。作为一名已经有一定 ClickHouse 使用经验的开发者,我深知在实际应用中,合理的表设计、索引优化以及查询优化对于提升 ClickHouse 性能的重要性。本文将结合我的实践经验,分享一些有效的优化策略。
1446 3
|
存储 编解码 Windows
EasyX图形库学习(三、用easyX控制图形界面中的小球、图片-加载、输出)
EasyX图形库学习(三、用easyX控制图形界面中的小球、图片-加载、输出)
|
网络安全 Docker 容器
VScode远程服务器之远程 远程容器 进行开发(五)
VScode远程服务器之远程 远程容器 进行开发(五)
423 1
|
人工智能 数据挖掘 Python
提升办公生产力工具——AI数据分析应用小浣熊
办公小浣熊广泛应用于日常数据分析、财务分析、商业分析、销售预测、市场分析等多个领域,为用户提供了强大的支持。
提升办公生产力工具——AI数据分析应用小浣熊
|
存储 缓存 运维
带你读《云原生架构白皮书2022新版》——主要架构模式(上)
带你读《云原生架构白皮书2022新版》——主要架构模式(上)
1313 81
|
存储 机器学习/深度学习 编解码
app版本更新的五种实现方式
app版本更新的五种实现方式
1364 2
|
SQL 分布式计算 Java
IDEA 打包 Spark 项目 POM 文件依赖
这是一个 Maven POM 示例,用于构建一个使用 Spark 与 Hive 的项目,目标是将数据从 Hive 导入 ClickHouse。POM 文件设置了 Scala 和 Spark 的依赖,包括 `spark-core_2.12`, `spark-sql_2.12`, 和 `spark-hive_2.12`。`maven-assembly-plugin` 插件用于打包,生成包含依赖的和不含依赖的两种 JAR 包。`scope` 说明了依赖的使用范围,如 `compile`(默认),`provided`,`runtime`,`test` 和 `system`。
392 0
|
分布式计算 Hadoop 关系型数据库
Sqoop入门(一篇就够了)(上)
Sqoop入门(一篇就够了)(上)
490 0