每日学术速递4.23

简介: 神经辐射场 (NeRF) 能够以前所未有的视觉质量实现新颖的视图合成。然而,为了渲染逼真的图像,NeRF 需要对每个像素进行数百次深度多层感知器 (MLP) 评估。这是非常昂贵的,并且使实时渲染变得不可行,即使在强大的现代 GPU 上也是如此。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields


2c8c0fd920ca58830513b2e89728a0f7.png


标题:LiDAR-NeRF:通过神经辐射场的新型 LiDAR 视图合成

作者:Tang Tao, Longfei Gao, Guangrun Wang, Peng Chen, Dayang Hao, Xiaodan Liang, Mathieu Salzmann, Kaicheng Yu

文章链接:https://arxiv.org/abs/2304.10406

f41afaa385abd384f629df19d4f67dc7.png

8e42cd8bc5b5d5b8120edab0b92e332f.png

cb1ec9e283bb1e2d6b23d945eda2276d.png

7e83f09b012a178b60c2ac3374a4e3c7.png

396d83307c96071e71272430b6d6441c.png

摘要:

       我们介绍了一项新任务,即 LiDAR 传感器的新颖视图合成。虽然带有风格迁移神经网络的传统基于模型的 LiDAR 模拟器可用于渲染新颖的视图,但它们在生成准确和逼真的 LiDAR 模式方面存在不足,因为它们所依赖的渲染器利用的是不可微分的游戏引擎。据我们所知,我们通过制定第一个可区分的 LiDAR 渲染器来解决这个问题,并提出了一个端到端的框架 LiDAR-NeRF,利用神经辐射场 (NeRF) 来共同学习几何和属性的 3D 点。为了评估我们方法的有效性,我们建立了一个以对象为中心的多视图 LiDAR 数据集,称为 NeRF-MVL。它包含从使用多个 LiDAR 传感器捕获的 360 度视点观察到的 9 个类别的对象观察结果。我们在场景级 KITTI-360 数据集和对象级 NeRF-MVL 上进行的大量实验表明,我们的 LiDAR-NeRF 显着优于基于模型的算法。

2.Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra

b121d9c71d4cc58c2605223a72f606a4.png

标题:Tetra-NeRF:使用四面体表示神经辐射场

作者:Jonas Kulhanek, Torsten Sattler

文章链接:https://arxiv.org/abs/2304.06018

项目代码:https://jkulhanek.com/tetra-nerf

d09525ef4aee98cd77bbfa76e340a38d.png

274f27102808352e7bf78607231d2a51.png

6872cc19cc5725ebf518c1d6d1e9c466.png

摘要:

       神经辐射场 (NeRFs) 是一种非常新近且非常流行的方法,用于解决新视图合成和 3D 重建问题。NeRFs 使用的一种流行的场景表示是将场景的统一的、基于体素的细分与 MLP 相结合。基于场景的(稀疏)点云通常可用的观察,本文提出使用基于四面体和 Delaunay 表示的自适应表示,而不是均匀细分或基于点的表示。我们表明,这样的表示可以进行有效的训练并产生最先进的结果。我们的方法优雅地结合了 3D 几何处理、基于三角形的渲染和现代神经辐射场的概念。与基于体素的表示相比,我们的表示提供了可能靠近表面的场景部分的更多细节。与基于点的表示相比,我们的方法实现了更好的性能。

3.Learning Neural Duplex Radiance Fields for Real-Time View Synthesis(CVPR 2023)

7ff4c06fdd38abeb27c0f9108e002d27.png

标题:学习用于实时视图合成的神经双工辐射场

作者:Ziyu Wan, Christian Richardt, Aljaž Božič, Chao Li, Vijay Rengarajan, Seonghyeon Nam, Xiaoyu Xiang, Tuotuo Li, Bo Zhu, Rakesh Ranjan, Jing Liao

文章链接:https://arxiv.org/abs/2304.05977

项目代码:http://raywzy.com/NDRF/

2343965bc20501112dc99815f1c5dd14.png

6dc583b6c614dc568c17c67b5b9ea521.png

5f8945bfbe9c29539b4d98b364de0a25.png

df74145b1c937753af6170d0b55e98fd.png


摘要:

       神经辐射场 (NeRF) 能够以前所未有的视觉质量实现新颖的视图合成。然而,为了渲染逼真的图像,NeRF 需要对每个像素进行数百次深度多层感知器 (MLP) 评估。这是非常昂贵的,并且使实时渲染变得不可行,即使在强大的现代 GPU 上也是如此。在本文中,我们提出了一种新颖的方法来将 NeRF 提取和烘焙为高效的基于网格的神经表示,这些表示与大规模并行图形渲染管道完全兼容。我们将场景表示为在双层双工网格上编码的神经辐射特征,通过从可靠的光线-表面相交区间学习聚合辐射信息,有效克服了 3D 表面重建中固有的不准确性。为了利用附近像素的局部几何关系,我们利用屏幕空间卷积代替 NeRF 中使用的 MLP 来实现高质量的外观。最后,整个框架的性能通过一种新颖的多视图蒸馏优化策略得到进一步提升。我们通过对一系列标准数据集的广泛实验证明了我们方法的有效性和优越性。

目录
相关文章
|
Ubuntu Linux C++
Ubuntu20.4配置arm交叉编译环境
我是在虚拟机中配置的,如果你的嵌入式设备足够完成自己的编译,可以不考虑虚拟机的。
1557 0
|
人工智能 安全 IDE
【AI帮我写代码,上班摸鱼不是梦】手摸手图解CodeWhisperer的安装使用
除了借助ChatGPT通过问答的方式生成代码,也可以通过IDEA插件在写代码是直接帮助我们生成代码。 目前,IDEA插件有CodeGeeX、CodeWhisperer、Copilot。其中,CodeGeeX和CodeWhisperer是完全免费的,Copilot是收费的,每月10美元。 下面我们来了解CodeWhisperer的安装和使用,如果你还想了解其他的可以在评论告诉我。
548 4
|
数据采集 供应链 搜索推荐
数据集成:融合不同来源的数据
【6月更文挑战第4天】数据集成在企业中发挥关键作用,连接数据孤岛,促进信息流动,提升决策能力。通过抽取、清洗、转换和加载(ETL)不同来源、格式的数据,整合到统一框架,进行深度分析。以零售商为例,集成销售、客户和供应链数据可优化库存管理。数据清洗确保质量,转换满足分析需求,最终加载到数据仓库。Python和pandas库是实现这一过程的工具之一。随着技术进步,数据集成将推动企业向智能化和个性化发展。
405 2
|
7月前
|
Arthas 监控 Java
Arthas sm(查看已加载类的方法信息 )
Arthas sm(查看已加载类的方法信息 )
170 6
|
8月前
|
边缘计算 人工智能 算法
LLM最大能力密度100天翻一倍!清华刘知远团队提出Densing Law
大型语言模型(LLMs)的快速发展显著提升了性能,但也带来了计算与能耗挑战。清华大学刘知远团队提出“能力密度”概念,定义为有效参数规模与实际参数规模的比值,揭示LLMs能力密度每100天翻倍的“Densing Law”。这一发现提供评估模型效率与性能的新视角,推动LLMs向更高效、可持续方向发展,同时降低部署成本,拓展应用场景。然而,Densing Law的普适性及多因素影响仍需进一步研究,未来需克服技术挑战以实现更高效率的模型设计与优化。
273 30
|
9月前
|
传感器 物联网 大数据
物联网与大数据:揭秘万物互联的新纪元
物联网与大数据:揭秘万物互联的新纪元
367 7
|
机器学习/深度学习 自然语言处理 并行计算
深度学习笔记(十四):Transormer知识总结
关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。
240 1
|
缓存 监控 Java
Java虚拟机(JVM)性能调优实战指南
在追求软件开发卓越的征途中,Java虚拟机(JVM)性能调优是一个不可或缺的环节。本文将通过具体的数据和案例,深入探讨JVM性能调优的理论基础与实践技巧,旨在为广大Java开发者提供一套系统化的性能优化方案。文章首先剖析了JVM内存管理机制的工作原理,然后通过对比分析不同垃圾收集器的适用场景及性能表现,为读者揭示了选择合适垃圾回收策略的数据支持。接下来,结合线程管理和JIT编译优化等高级话题,文章详细阐述了如何利用现代JVM提供的丰富工具进行问题诊断和性能监控。最后,通过实际案例分析,展示了性能调优过程中可能遇到的挑战及应对策略,确保读者能够将理论运用于实践,有效提升Java应用的性能。 【
523 10
|
存储 Java
滚雪球学Java(41):Lambda表达式和方法引用:提高代码可读性和简洁性的神器
【5月更文挑战第16天】🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
155 2
滚雪球学Java(41):Lambda表达式和方法引用:提高代码可读性和简洁性的神器
|
机器学习/深度学习 数据采集 算法
Python实现GWO智能灰狼优化算法优化支持向量机回归模型(svr算法)项目实战
Python实现GWO智能灰狼优化算法优化支持向量机回归模型(svr算法)项目实战