每日学术速递4.15

简介: 大规模视觉语言模型(例如 CLIP)学习强大的图像文本表示,这些表示已找到许多应用程序,从零镜头分类到文本到图像生成。尽管如此,它们通过提示解决新的判别任务的能力仍落后于大型语言模型,例如 GPT-3。在这里,我们探索视觉提示工程的想法,通过在图像空间而不是文本中进行编辑来解决分类以外的计算机视觉任务。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields


bad947ae7f2044b5a3df9cda901e20ba.png


标题:Zip-NeRF:基于网格的抗锯齿神经辐射场

作者:Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Gao, Yong Jae Lee

文章链接:https://arxiv.org/abs/2304.06706

项目代码:https://jonbarron.info/zipnerf/

91af4553b0f9bd4bf249116269068b66.png

aecf2fc8e6f9be9f8e614020212d2306.png

4aff6cb684e5f2130e43f8f9826f61b4.png

ebafc235574510f509ab8931652919d1.png

b41eb5e7c4f46c3f0b58953e036ee82c.png

摘要:

       通过在 NeRF 从空间坐标到颜色和体积密度的学习映射中使用基于网格的表示,可以加速神经辐射场训练。然而,这些基于网格的方法缺乏对比例的明确理解,因此经常引入锯齿,通常以锯齿或场景内容缺失的形式出现。mip-NeRF 360 之前已经解决了抗锯齿问题,其原因是沿圆锥体的子体积而不是沿射线的点,但这种方法本身与当前基于网格的技术不兼容。我们展示了如何使用来自渲染和信号处理的想法来构建一种技术,该技术将 mip-NeRF 360 和基于网格的模型(例如 Instant NGP)相结合,产生的错误率比任何一种现有技术都低 8% - 76%,并且训练速度比 mip-NeRF 360 快 22 倍。

2.Segment Everything Everywhere All at Once

5b93881323d801ec07a46cc7f0e31212.png

标题:一次分割所有地方的一切

作者:Chung-Ching Lin, Jiang Wang, Kun Luo, Kevin Lin, Linjie Li, Lijuan Wang, Zicheng Liu

文章链接:https://arxiv.org/abs/2304.06706

项目代码:https://36771ee9c49a4631.gradio.app/

a8e4b30590ceae21e027d64e3bb66188.png

cda1954ec677b8e0077bfecfea9999f3.png

24eee1f717ec82d14f0d0cc372abd3de.png

摘要:

       尽管对交互式 AI 系统的需求不断增长,但很少有关于视觉理解中人机交互的综合研究,例如分割。受 LLM 基于提示的通用界面开发的启发,本文介绍了 SEEM,这是一种可提示的交互式模型,用于在图像中一次性分割所有内容。SEEM 有四个要求:i) 多功能性:通过为不同类型的提示引入多功能提示引擎,包括点、框、涂鸦、遮罩、文本和另一幅图像的引用区域;ii) 组合性:通过学习视觉和文本提示的联合视觉语义空间来动态组合查询以进行推理,如图 1 所示;iii) 交互性:通过结合可学习的记忆提示,通过掩码引导的交叉注意力保留对话历史信息;和 iv) 语义意识:通过使用文本编码器对文本查询和掩码标签进行编码以进行开放式词汇分割。

3.What does CLIP know about a red circle? Visual prompt engineering for VLMs

fadcb62310f7a240855d34d0ead24816.png


标题:CLIP 对红色圆圈了解多少?VLM 的视觉提示工程

作者:Aleksandar Shtedritski, Christian Rupprecht, Andrea Vedaldi

文章链接:https://arxiv.org/abs/2304.06712

f6891dd0676e3d2f0013c5d21a8e6a80.png

ed4a895b09274dd0b4d26bbc6cdf1776.png

480479eaae33b04274edb3619f50e615.png

9de9abb2a6adcd92f15f3ebd834b85c8.png

53cb50938e8e3fba29b46eb3e8a5110a.png

摘要:

       大规模视觉语言模型(例如 CLIP)学习强大的图像文本表示,这些表示已找到许多应用程序,从零镜头分类到文本到图像生成。尽管如此,它们通过提示解决新的判别任务的能力仍落后于大型语言模型,例如 GPT-3。在这里,我们探索视觉提示工程的想法,通过在图像空间而不是文本中进行编辑来解决分类以外的计算机视觉任务。特别是,我们发现了 CLIP 的新兴能力,通过简单地在对象周围画一个红色圆圈,我们可以将模型的注意力引导到该区域,同时还保持全局信息。我们通过在零样本引用表达式理解中实现最先进的技术和在关键点定位任务中的强大性能来展示这种简单方法的强大功能。最后,我们提请注意大型语言视觉模型的一些潜在伦理问题。

目录
相关文章
|
机器学习/深度学习 编解码 人工智能
每日学术速递4.28
神经辐射场 (NeRF) 在 3D 场景建模和合成高保真新颖视图方面取得了显著成功。然而,现有的基于 NeRF 的方法更侧重于充分利用图像分辨率来生成新颖的视图,而较少考虑在有限的输入分辨率下生成细节。类似于图像超分辨率的广泛使用
202 0
|
机器学习/深度学习 自然语言处理 安全
每日学术速递2.24
在本技术报告中,我们介绍了百度 KDD 杯 2022 空间动态风电功率预测挑战赛的解决方案。风能是一种快速增长的清洁能源。准确的风电功率预测对于电网稳定和供应安全至关重要。为此,主办方提供了包含134台风电机组历史数据的风电数据集,并发起百度KDD Cup 2022,以检验当前风电预测方法的局限性。
199 0
|
机器学习/深度学习 自然语言处理 物联网
每日学术速递5.1
大型语言模型 (LLM) 在各种开放式任务中展示了令人印象深刻的零样本能力,而最近的研究还探索了使用 LLM 进行多模态生成。
154 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.8
扩散模型(DM)已成为生成模型的新趋势,并展示了强大的条件合成能力。其中,在大规模图像文本对上预训练的文本到图像扩散模型可通过可定制的提示高度控制。与专注于低级属性和细节的无条件生成模型不同,由于视觉语言预训练,文本到图像扩散模型包含更多高级知识。在本文中,我们提出了 VPD(具有预训练扩散模型的视觉感知),这是一种在视觉感知任务中利用预训练文本到图像扩散模型的语义信息的新框架。我们没有在基于扩散的管道中使用预训练的去噪自动编码器,而是简单地将其用作主干,旨在研究如何充分利用所学知识。
137 0
|
机器人
每日学术速递4.27
我们研究如何使用 Transformers 构建和训练用于机器人决策的空间表示。特别是,对于在各种环境中运行的机器人,我们必须能够快速训练或微调机器人感觉运动策略,这些策略对杂波具有鲁棒性、数据效率高,并且可以很好地泛化到不同的环境。
140 0
|
SQL 机器学习/深度学习 自然语言处理
每日学术速递3.22
我们介绍了一种新颖的方法,通过对一种或多种字母字体进行风格化来自动生成艺术排版,以直观地传达输入词的语义,同时确保输出保持可读性。为了解决我们手头任务的各种挑战,包括相互冲突的目标(艺术风格化与易读性)、缺乏基本事实和巨大的搜索空间,我们的方法利用大型语言模型来桥接文本和视觉图像以进行风格化,并建立一个无监督的具有扩散模型骨干的生成模型。
114 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递5.6
大型语言模型的最新进展引发了思维链中的推理,使模型能够以类似人类的方式分解问题。虽然这种范式提高了语言模型中的多步推理能力,但它受到单峰性的限制,主要应用于问答任务
132 0
|
机器学习/深度学习 运维 自然语言处理
每日学术速递3.3
评估面部图像的质量对于以足够的准确性操作面部识别系统至关重要。人脸质量标准化的最新进展 (ISO/IEC WD 29794-5) 建议使用组件质量测量方法将人脸质量分解为各个因素,从而为操作员重新捕获低质量图像提供有价值的反馈。
139 0
|
机器学习/深度学习 传感器 自然语言处理
每日学术速递4.23
神经辐射场 (NeRF) 能够以前所未有的视觉质量实现新颖的视图合成。然而,为了渲染逼真的图像,NeRF 需要对每个像素进行数百次深度多层感知器 (MLP) 评估。这是非常昂贵的,并且使实时渲染变得不可行,即使在强大的现代 GPU 上也是如此。
138 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递3.10
本文介绍了扩散策略,这是一种通过将机器人的视觉运动策略表示为条件去噪扩散过程来生成机器人行为的新方法。我们对来自 4 个不同机器人操作基准的 11 个不同任务的扩散策略进行基准测试,发现它始终优于现有的最先进的机器人学习方法,平均提高 46.9%。扩散策略学习动作分布得分函数的梯度,并在推理过程中通过一系列随机朗之万动力学步骤针对该梯度场进行迭代优化。
154 0