每日学术速递4.10

简介: 雨雪天气去除是天气退化图像恢复中的一项专门任务,旨在消除共存的雨条纹和雪颗粒。在本文中,我们提出了 RSFormer,这是一种高效且有效的 Transformer,可以应对这一挑战。最初,我们探索了层次结构中卷积网络 (ConvNets) 和视觉变换器 (ViTs) 的接近程度,并通过实验发现它们在阶段内特征学习中的表现大致相同。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理

Subjects: cs.CV


1.Super-Resolving Face Image by Facial Parsing Information

3dc7ce10f87921d3198e3acd7688f56c.png

标题:通过人脸解析信息超分辨人脸图像

作者:Chenyang Wang, Junjun Jiang, Zhiwei Zhong, Deming Zhai, Xianming Liu

文章链接:https://arxiv.org/abs/2304.02923v1

5925d31d150588e10ea5afaa2d1a7cdc.png

0ed2afa17911d80349bc3d78924b641d.png

b64a91ba72f7f90ec6c92224de0c67ef.png

d984964bb22528cb440d6da42b528f79.png

摘要:

       人脸超分辨率是一种将低分辨率的人脸图像转换成对应的高分辨率图像的技术。在本文中,我们构建了一个新的解析图引导人脸超分辨率网络,它直接从低分辨率人脸图像中提取人脸先验(即解析图)以供后续使用。为了充分利用提取的先验,精心设计了一个解析图注意力融合块,它不仅可以有效地探索解析图的信息,而且还结合了强大的注意力机制。此外,鉴于高分辨率特征包含更精确的空间信息,而低分辨率特征提供强大的上下文信息,我们希望保持和利用这些互补信息。为了实现这一目标,我们开发了一个多尺度细化块来维护空间和上下文信息,并利用多尺度特征来细化特征表示。实验结果表明,我们的方法在定量指标和视觉质量方面优于最先进的方法。源代码将在这个 https URL 上可用。

2.GA-HQS: MRI reconstruction via a generically accelerated unfolding approach

14f5639db92bbb83eeee2154ee693c71.png

标题:GA-HQS:通过一般加速展开方法进行 MRI 重建

作者:Jiawei Jiang, Yuchao Feng, Honghui Xu, Wanjun Chen, Jianwei Zheng

文章链接:https://arxiv.org/abs/2304.02883v1

e647d42d158b20b25ded61fe15a753f5.png

52789817208670bed9311ed3926c125b.png

f694e5db731dea8249b332725406d722.png

9b0ae223d62c5049f3deb0134155be80.png

摘要:

       深度展开网络 (DUN) 是压缩感知 MRI 领域中最重要的方法,因为它们可以使用可学习的网络来促进可解释的前向推理运算符。然而,仍然存在一些令人生畏的问题,包括对一阶优化算法的严重依赖、信息融合机制的不足以及捕获远程关系的局限性。为了解决这些问题,我们提出了一种通用加速半二次分裂 (GA-HQS) 算法,该算法结合了二阶梯度信息和金字塔注意模块,用于像素级输入的精细融合。此外,还设计了多尺度分裂变换器来增强全局特征表示。综合实验表明,我们的方法在单线圈 MRI 加速任务上优于以前的方法。

3.Towards an Effective and Efficient Transformer for Rain-by-snow Weather Removal


标题:迈向一个有效和高效的Transformer,用于去除雨雪天气

作者:Ioannis Siglidis, Nicolas Gonthier, Julien Gaubil, Tom Monnier, Mathieu Aubry

文章链接:https://arxiv.org/abs/2304.02860v1

项目代码:https://github.com/chdwyb/RSFormer

bf9230ccc2f3051223d4c130c5add435.png

3c9836502c6f81cfb40413ef170a5c7f.png

7d680c745781467424b40b161bd98bf4.png

8cf1ca50bf01e971107bb8d53f5289ef.png

ee7ecf477303ef98df890c022a92edca.png

摘要:

       雨雪天气去除是天气退化图像恢复中的一项专门任务,旨在消除共存的雨条纹和雪颗粒。在本文中,我们提出了 RSFormer,这是一种高效且有效的 Transformer,可以应对这一挑战。最初,我们探索了层次结构中卷积网络 (ConvNets) 和视觉变换器 (ViTs) 的接近程度,并通过实验发现它们在阶段内特征学习中的表现大致相同。在此基础上,我们利用类似 Transformer 的卷积块 (TCB) 代替计算量大的自注意力,同时保留适应输入内容的注意力特性。我们还证明了跨阶段进展对于性能改进至关重要,并提出了一种全局-局部自注意采样机制 (GLASM),该机制在捕获全局和局部依赖性的同时对特征进行向下/向上采样。最后,我们合成了两个新的雨雪数据集 RSCityScape 和 RS100K,以评估我们提出的 RSFormer。大量实验证明,与其他恢复方法相比,RSFormer 在性能和时间消耗之间取得了最佳平衡。例如,它优于 Restormer,参数数量减少了 1.53%,推理时间减少了 15.6%。数据集、源代码和预训练模型可在 \url{ 此 https URL } 获得。

目录
相关文章
|
数据采集 存储 监控
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
本文探讨了如何利用 PHP 的 `set_time_limit()` 与爬虫工具的 `setTrafficLimit()` 方法,结合多线程和代理 IP 技术,高效稳定地抓取百度云盘的公开资源。通过设置脚本执行时间和流量限制,使用多线程提高抓取效率,并通过代理 IP 防止 IP 封禁,确保长时间稳定运行。文章还提供了示例代码,展示了如何具体实现这一过程,并加入了数据分类统计功能以监控抓取效果。
245 17
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
|
数据挖掘 索引 Python
Python 金融编程第二版(二)(5)
Python 金融编程第二版(二)
121 0
|
机器学习/深度学习 数据处理
【机器学习】生成式模型与判别式模型有什么区别?
【5月更文挑战第10天】【机器学习】生成式模型与判别式模型有什么区别?
|
PHP
运行php服务,电脑抓不了包
运行php服务,电脑抓不了包
124 0
|
传感器 数据采集 机器学习/深度学习
刮板输送机数字孪生监测系统
刮板传输机是煤矿、矿山等行业中常见的一种物料输送设备,但是由于工作环境恶劣、运行状态复杂多变,使得刮板传输机的监测难度较大。数字孪生技术可以通过对传感器数据进行实时采集和分析,构建刮板传输机的数字模型,实现刮板传输机的实时监测。
431 0
|
机器学习/深度学习 PyTorch 测试技术
【Pytorch神经网络实战案例】28 GitSet模型进行步态与身份识别(CASIA-B数据集)
该数据集是一个大规模的、多视角的步态库。其中包括124个人,每个人有11个视角(0,18,36,...,180),在3种行走条件(普通、穿大衣、携带包裹)下采集。
606 0
|
索引
面试官:为什么要尽量避免使用 IN 和 NOT IN?大部分人都会答错...
面试官:为什么要尽量避免使用 IN 和 NOT IN?大部分人都会答错...
213 0
面试官:为什么要尽量避免使用 IN 和 NOT IN?大部分人都会答错...
|
Linux
LINUX编译m4
LINUX编译m4
253 0
|
存储 Java
javaBean内省类【javaBean、BeanInfo、Introspector、PropertyDescriptor】
javaBean内省类【javaBean、BeanInfo、Introspector、PropertyDescriptor】
284 0
javaBean内省类【javaBean、BeanInfo、Introspector、PropertyDescriptor】