每日学术速递3.31

简介: 我们提出了 LLaMA-Adapter,这是一种轻量级自适应方法,可以有效地将 LLaMA 微调为指令跟随模型。使用 52K 自我指导演示,LLaMA-Adapter 仅在冻结的 LLaMA 7B 模型上引入 1.2M 可学习参数,并且在 8 个 A100 GPU 上进行微调的成本不到一小时。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention

53ff61d7ab4235e2a6fb1f99d76e9333.png

标题:LLaMA-Adapter:具有零初始注意力的语言模型的高效微调

作者:Yutao Cui, Cheng Jiang, Gangshan Wu, LiMin Wang

文章链接:https://arxiv.org/abs/2303.16199

项目代码:https://github.com/ZrrSkywalker/LLaMA-Adapter

0491ba265e72f2f6faa59fbbfd08d3c6.png

9a5958a6cb117b3152bc167573e5c345.png

dd35cc4e245cddf70084beaae72c4945.png

7c1a1f786d3a1a5f66f4107bee076865.png

摘要:

       我们提出了 LLaMA-Adapter,这是一种轻量级自适应方法,可以有效地将 LLaMA 微调为指令跟随模型。使用 52K 自我指导演示,LLaMA-Adapter 仅在冻结的 LLaMA 7B 模型上引入 1.2M 可学习参数,并且在 8 个 A100 GPU 上进行微调的成本不到一小时。具体来说,我们采用了一组可学习的自适应提示,并将它们添加到更高转换器层的输入文本标记中。然后,提出了一种具有零门控的零初始注意机制,该机制自适应地将新的教学线索注入 LLaMA,同时有效地保留其预训练知识。通过高效的训练,LLaMA-Adapter 生成高质量的响应,与具有完全微调的 7B 参数的羊驼相媲美。此外,我们的方法可以简单地扩展到多模态输入,例如图像,用于图像条件 LLaMA,从而在 ScienceQA 上实现卓越的推理能力。我们在这个 https URL 上发布我们的代码。

2.HOLODIFFUSION: Training a 3D Diffusion Model using 2D Images

20e30df285cedc6d38e417ecfa36e6a8.png

标题:HOLODIFFUSION:使用 2D 图像训练 3D 扩散模型

作者:Animesh Karnewar, Andrea Vedaldi, David Novotny, Niloy Mitra

文章链接:https://arxiv.org/abs/2303.16509

项目代码:https://holodiffusion.github.io/

81d97290bec385356c05b9fd4c4aa8a7.png

78193643c757257ae0fc188b4788091c.png

摘要:

       扩散模型已成为 2D 图像生成建模的最佳方法。他们成功的部分原因在于有可能以稳定的学习目标对数百万甚至数十亿张图像进行训练。然而,由于两个原因,将这些模型扩展到 3D 仍然很困难。首先,寻找大量 3D 训练数据比寻找 2D 图像要复杂得多。其次,虽然扩展模型以在 3D 而不是 2D 网格上运行在概念上是微不足道的,但相关的内存和计算复杂性的立方增长使得这不可行。我们通过引入一种新的扩散设置来解决第一个挑战,该设置可以端到端地进行训练,仅使用用于监督的 2D 姿势图像;第二个挑战是提出一种将模型记忆与空间记忆分离的图像形成模型。我们使用之前未用于训练 3D 生成模型的 CO3D 数据集评估我们在真实世界数据上的方法。我们表明,我们的扩散模型具有可扩展性、训练鲁棒性,并且在样本质量和保真度方面与现有的 3D 生成建模方法相比具有竞争力。

3.Your Diffusion Model is Secretly a Zero-Shot Classifier

38c1cba1b9f6b69ea0448a87d3ea64db.png

标题:您的扩散模型实际上是一个零样本分类器

作者:Alexander C. Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, Deepak Pathak

文章链接:https://arxiv.org/abs/2303.16203

项目代码:https://diffusion-classifier.github.io/

a45496a6f8181e6eff4e8887ebf6ee47.png

61f9495abc9746f7e469f25e36458713.png

c0e6dc295b230841b1526760dc5b6212.png

fcbb2a7a0322d29069e1567b8ae99bb4.png

摘要:

       最近的大规模文本到图像扩散模型浪潮极大地提高了我们基于文本的图像生成能力。这些模型可以为种类繁多的提示生成逼真的图像,并展现出令人印象深刻的构图泛化能力。到目前为止,几乎所有用例都只关注采样;然而,扩散模型也可以提供条件密度估计,这对于图像生成以外的任务很有用。在本文中,我们展示了从大规模文本到图像扩散模型(如 Stable Diffusion)的密度估计可用于执行零样本分类,而无需任何额外训练。我们称为扩散分类器的生成式分类方法在各种基准测试中取得了很好的结果,并且优于从扩散模型中提取知识的其他方法。尽管零镜头识别任务的生成方法和判别方法之间仍然存在差距,但我们发现我们基于扩散的方法比竞争判别方法具有更强的多模态关系推理能力。最后,我们使用扩散分类器从在 ImageNet 上训练的类条件扩散模型中提取标准分类器。尽管这些模型经过弱增强训练且没有正则化,但它们接近 SOTA 判别分类器的性能。总的来说,我们的结果是朝着对下游任务使用生成模型而不是判别模型迈出的一步。此 https URL 的结果和可视化

目录
相关文章
|
Web App开发 小程序 前端开发
【产品上新】小程序新内核来了!提升安卓浏览器性能,支持WebRTC
【产品上新】小程序新内核来了!提升安卓浏览器性能,支持WebRTC
404 10
|
存储 监控 Java
10分钟3个步骤集成使用SkyWalking
此时就非常推荐SkyWalking了,SkyWalking不仅仅是一款链路跟踪工具,还可以作为一个系统监控工具,还具有告警功能。使用简便、上手又快。真可谓快、准、狠。
10分钟3个步骤集成使用SkyWalking
|
3月前
|
机器人 Windows
直播间自动发言机器人,抖音机器人评论脚本,直播间自动发言机器人
多线程架构实现弹幕监听和发送分离 支持特殊用户识别和定制回复
|
存储 算法 安全
深入解析 X509Certificate:成员变量与方法详解
深入解析 X509Certificate:成员变量与方法详解
813 2
|
11月前
|
存储 机器学习/深度学习 人工智能
《量子AI:突破量子比特稳定性与容错性的关键瓶颈》
量子计算的发展面临量子比特稳定性和容错性的关键挑战。量子纠错技术如表面码、Steane七量子比特颜色代码等,通过编码和解码提高可靠性。硬件设计选择超导或离子阱量子比特,结合低噪声器件减少干扰。量子噪声抑制技术优化环境,降低噪声影响。拓扑量子计算利用多体系统的拓扑性质实现天然容错。量子算法优化和AI技术助力,进一步提升抗干扰能力。尽管取得进展,但要实现大规模应用仍需克服诸多挑战。
286 13
|
JavaScript 数据可视化
JS如何优雅的实现模块自动滚动展示
【8月更文挑战第22天】JS如何优雅的实现模块自动滚动展示
321 1
JS如何优雅的实现模块自动滚动展示
|
运维 开发工具 C#
总结两种使用OpenCv连接海康相机播放视频画面方法
总结两种使用OpenCv连接海康相机播放视频画面方法
2701 0
|
C++
C++ 默认参数与引用传递:语法、用法及示例
C++ 允许函数参数具有默认值,简化调用。例如,`void myFunction(string country = "Norway")` 中`country`默认为"Norway"。默认参数仅适用于函数参数,不包括返回值。引用传递是另一种传递方式,函数直接访问变量内存,允许修改原值,提高效率。`void swapNums(int &x, int &y)` 中`x`和`y`为引用参数。了解这些特性可提升代码可读性和性能。
341 0
|
编译器 API C++
【C++ 动态库设计】动态库中的模板函数:解决如果将模板函数封装成API库
【C++ 动态库设计】动态库中的模板函数:解决如果将模板函数封装成API库
641 0
|
开发工具 数据安全/隐私保护 C++
windows openssl安装和基本使用(代码演示)
本文主要讲到了openssl的基本使用方法,开发环境为windows,开发工具为VS2019.本文主要是说明openssl如何使用,不介绍任何理论知识,如果有不懂的,请自行百度。个人建议下一个everything查询工具,真的很好用,比window自带的查询快了很多,可以查询自己想要的文件
1023 0
windows openssl安装和基本使用(代码演示)