每日学术速递3.27

简介: 向多指机器人教授灵巧性一直是机器人学领域的一项长期挑战。该领域最突出的工作集中在学习控制器或策略,这些控制器或策略对视觉观察或从视觉得出的状态估计进行操作。然而,这种方法在需要对接触力或手本身遮挡的物体进行推理的细粒度操作任务上表现不佳。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理

Subjects: cs.CV


1.Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models


b29d3e1b7d847bc7c432565d11ccdd28.png


标题:Text2Room:从 2D 文本到图像模型中提取带纹理的 3D 网格

作者:Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, Matthias Nießner

文章链接:https://arxiv.org/abs/2303.11989

项目代码:https://github.com/lukashoel/text2room

ef7f6906ee2324b9d47288153807f191.png

df697f89594a00e878fb9a4bf49c71bb.png

eb569e20e3929b9bd7c29da2f31d5fed.png


摘要:

       我们介绍了 Text2Room,这是一种从给定文本提示作为输入生成房间尺度纹理 3D 网格的方法。为此,我们利用预训练的 2D 文本到图像模型来合成一系列来自不同姿势的图像。为了将这些输出提升为一致的 3D 场景表示,我们将单眼深度估计与文本条件修复模型相结合。我们方法的核心思想是量身定制的视点选择,这样每张图像的内容都可以融合到一个无缝的、有纹理的 3D 网格中。更具体地说,我们提出了一种连续对齐策略,该策略将场景帧与现有几何体迭代融合以创建无缝网格。与专注于从文本生成单个对象或缩小轨迹的现有作品不同,我们的方法生成具有多个对象和显式 3D 几何的完整 3D 场景。我们使用定性和定量指标评估我们的方法,证明它是第一种仅从文本作为输入生成具有引人注目的纹理的房间尺度 3D 几何图形的方法。

2.Visual Representation Learning from Unlabeled Video using Contrastive Masked Autoencoders

74208d6de64c03e1ce3981c7a1b26201.png


标题:使用对比掩码自动编码器从未标记视频中学习视觉表示

作者:Jefferson Hernandez, Ruben Villegas, Vicente Ordonez

文章链接:https://arxiv.org/abs/2303.12001

bb03b3fe0c6d6bcc8d95f40edfe06673.png

1715899c97cd21350c1f30e6dd049ff4.png

971cb31ef037d51a9a1ef4d0865fecab.png

摘要:

       掩码自动编码器 (MAE) 通过随机屏蔽输入图像块和重建损失来学习自我监督表示。或者,对比学习自监督方法鼓励相同输入的两个版本具有相似的表示,同时将不同输入的表示分开。我们提出了 ViC-MAE,这是一种结合 MAE 和对比学习的通用方法,它通过汇集在 MAE 重建目标下学习的局部特征表示,并在跨视频帧的对比目标下利用这种全局表示。我们表明,在 ViC-MAE 下学习的视觉表示可以很好地泛化到视频分类和图像分类任务。使用在 Moments in Time (MiT) 数据集上预训练的骨干 ViT-B/16 网络,我们在 Imagenet-1k 上通过提高 1.58% 的绝对 top-1 获得了从视频到图像的最先进的迁移学习最近一项工作的准确性。此外,我们的方法在 Kinetics-400 视频分类基准上保持了 81.50% top-1 准确率的竞争性迁移学习性能。此外,我们表明,尽管 ViC-MAE 很简单,但与将 MAE 预训练与之前提出的对比目标(如 VicReg 和 SiamSiam)相结合相比,ViC-MAE 产生了更好的结果。

3.Dexterity from Touch: Self-Supervised Pre-Training of Tactile Representations with Robotic Play

6ea3cc98d2650e4b03877bb72e6f4a90.png

标题:触觉的灵巧性:通过机器人游戏进行触觉表征的自我监督预训练

作者:Irmak Guzey, Ben Evans, Soumith Chintala, Lerrel Pinto

文章链接:https://arxiv.org/abs/2303.12076

项目代码:https://tactile-dexterity.github.io/

192bfbce8eb362e835c9d65f7f630530.png

c868674f1de80a154790aa1690822dc9.png

c78e62c36f3556f3ab7b2e73a770980b.png

摘要:

       向多指机器人教授灵巧性一直是机器人学领域的一项长期挑战。该领域最突出的工作集中在学习控制器或策略,这些控制器或策略对视觉观察或从视觉得出的状态估计进行操作。然而,这种方法在需要对接触力或手本身遮挡的物体进行推理的细粒度操作任务上表现不佳。在这项工作中,我们介绍了 T-Dex,这是一种基于触觉的灵巧性的新方法,分两个阶段运行。在第一阶段,我们收集了 2.5 小时的播放数据,用于训练自监督触觉编码器。这对于将高维触觉读数带入低维嵌入是必要的。在第二阶段,给出了一些灵巧任务的演示,我们学习了将触觉观察与视觉观察相结合的非参数策略。在五项具有挑战性的灵巧任务中,我们证明了我们基于触觉的灵巧性模型比纯视觉和基于扭矩的模型平均高出 1.7 倍。最后,我们对 T-Dex 的关键因素进行了详细分析,包括播放数据、架构和表征学习的重要性。

目录
相关文章
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.9
最近的视觉语言模型显示出令人印象深刻的多模态生成能力。但是,通常它们需要在海量数据集上训练大型模型。作为更具可扩展性的替代方案,我们引入了 Prismer,这是一种数据和参数高效的视觉语言模型,它利用了领域专家的集合。
156 0
每日学术速递3.9
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.3
最近在语言引导图像生成领域取得的突破取得了令人瞩目的成就,能够根据用户指令创建高质量和多样化的图像。尽管合成性能令人着迷,但当前图像生成模型的一个重大限制是它们在图像中生成连贯文本的能力不足,特别是对于像汉字这样的复杂字形结构。为了解决这个问题,我们引入了 GlyphDraw,这是一个通用的学习框架,旨在赋予图像生成模型生成嵌入连贯文本的图像的能力。据我们所知,这是图像合成领域第一个解决汉字生成问题的工作。
150 0
每日学术速递4.3
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递5.11
网页一直是视觉语言和纯语言任务的丰富、可扩展的资源。然而,只有网页的一部分被保留:图像标题对、长文本文章或原始 HTML,永远不会全部放在一个地方。
141 0
|
机器学习/深度学习 自然语言处理 并行计算
每日学术速递4.13
最近基于扩散的生成器可以仅根据文本提示生成高质量的图像。但是,它们不能正确解释指定构图空间布局的指令。我们提出了一种简单的方法,无需训练或微调图像生成器即可实现稳健的布局控制。我们的技术,我们称之为布局指导,操纵模型用来连接文本和视觉信息的交叉注意层,并在给定的所需方向上引导重建
133 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.8
扩散模型(DM)已成为生成模型的新趋势,并展示了强大的条件合成能力。其中,在大规模图像文本对上预训练的文本到图像扩散模型可通过可定制的提示高度控制。与专注于低级属性和细节的无条件生成模型不同,由于视觉语言预训练,文本到图像扩散模型包含更多高级知识。在本文中,我们提出了 VPD(具有预训练扩散模型的视觉感知),这是一种在视觉感知任务中利用预训练文本到图像扩散模型的语义信息的新框架。我们没有在基于扩散的管道中使用预训练的去噪自动编码器,而是简单地将其用作主干,旨在研究如何充分利用所学知识。
122 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.20
建造一个可以通过观察人类来理解和学习互动的机器人激发了几个视觉问题。然而,尽管在静态数据集上取得了一些成功的结果,但目前的模型如何直接用在机器人上仍然不清楚。在本文中,我们旨在通过以环境为中心的方式利用人类互动视频来弥合这一差距。利用人类行为的互联网视频,我们训练了一个视觉可供性模型,该模型估计人类可能在场景中的位置和方式进行交互
109 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递5.3
用任意语音音频生成说话人肖像是数字人和虚拟世界领域的一个关键问题。一种现代的说话人脸生成方法有望实现通用的音频-嘴唇同步、良好的视频质量和高系统效率的目标。
206 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递5.10
由于对各种可能的自然语言问题进行概括的挑战,基于知识库的问答被认为是一个难题。此外,不同知识库之间知识库模式项的异质性通常需要对不同知识库问答 (KBQA) 数据集进行专门培训。为了使用统一的免训练框架处理各种 KBQA 数据集的问题,我们提出了 KB-BINDER,它首次实现了对 KBQA 任务的少样本上下文学习
213 0
|
机器学习/深度学习 自然语言处理 机器人
每日学术速递4.26
我们介绍了 CLaMP:对比语言-音乐预训练,它使用音乐编码器和文本编码器通过对比损失联合训练来学习自然语言和符号音乐之间的跨模态表示。为了预训练 CLaMP,我们收集了 140 万个音乐文本对的大型数据集。它采用文本丢失作为数据增强技术和条形修补来有效地表示音乐数据,从而将序列长度减少到不到 10%。此外,我们开发了一个掩码音乐模型预训练目标,以增强音乐编码器对音乐背景和结构的理解。
113 0
|
机器学习/深度学习 传感器 自然语言处理
每日学术速递4.23
神经辐射场 (NeRF) 能够以前所未有的视觉质量实现新颖的视图合成。然而,为了渲染逼真的图像,NeRF 需要对每个像素进行数百次深度多层感知器 (MLP) 评估。这是非常昂贵的,并且使实时渲染变得不可行,即使在强大的现代 GPU 上也是如此。
127 0

热门文章

最新文章