AAAI,ICML,CVPR,NeurIPS...31篇国际七大AI顶会2021年度Best Papers 一文回顾(2)

简介: AAAI,ICML,CVPR,NeurIPS...31篇国际七大AI顶会2021年度Best Papers 一文回顾

ICML 2021 杰出论文奖


Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
TL;DR:多伦多大学和谷歌大脑提出一种持久进化策略(PES)的方法,实现参数快速更新,内存使用率低,无偏差,并且具有合理的方差特性。这篇获奖论文工作的一项关键性假设是在生成模型中加入组合式三维场景表征,以使图像合成更加可控。

将场景表示为组合生成性神经特征场,使我们能够将一个或多个物体从背景中分离出来,并在不需要额外监督的情况下,从非结构化和未处理的图像集中学习单个物体的形状和外观。深度生成模型允许以高分辨率进行高真实感图像合成。但对于许多应用程序来说,这还不够:内容创建还需要可控。

虽然近来一些工作研究了如何解开数据中变化的潜在因素,但其中大多数是在 2D 场景下运行的,而忽略了现实世界是 3D 的。此外,只有少数研究考虑了场景的构图性质。而该研究的关键假设是将组合 3D 场景表征结合到生成模型中,以生成更加可控的图像合成。

通过将场景表征为组合的生成神经特征场,该研究能够从背景中分离出一个或多个目标以及单个目标的形状和外观,同时从非结构化和未定位的图像集合中学习,而无需任何额外的监督。该研究通过将场景表征与神经渲染 pipeline 相结合,得到了快速且逼真的图像合成模型。实验表明,该模型能够分离出单个目标,并允许在场景中平移和旋转它们以及改变相机位姿。

文献地址:https://arxiv.org/abs/2112.13835

ICML 2021 杰出论文提名奖(Outstanding Paper Honorable Mention)


Optimal Complexity in Decentralized Training

展开计算图应用于许多场景中,包括训练RNN、通过展开优化调整超参数以及训练学习的优化器等等。目前,这种计算图中优化参数的方法存在着高方差梯度、偏差、缓慢更新以及大量内存使用等问题。

作者在这篇获奖论文中引入了一种持久进化策略(Persistent Evolution Strategies,PES)方法,它将计算图划分为一系列阶段展开(truncated unrolls),并在每次展开后执行基于进化策略的更新步骤。PES通过在整个展开序列中累积修正项来消除这些截断的偏差。

作者通过实验证明了PES与其他几种合成任务的梯度估计方法相比的优势,并展示了它在训练学习型优化器和调整超参数方面的适用性。

文献地址:https://icml.cc/virtual/2021/poster/8893

Oops I Took A Gradient: Scalable Sampling for Discrete Distributions
文献地址:https://icml.cc/virtual/2021/poster/9335
Understanding self-supervised learning dynamics without contrastive pairs

文献地址:https://icml.cc/virtual/2021/poster/10403
Solving high-dimensional parabolic PDEs using the tensor train format

文献地址:https://icml.cc/virtual/2021/poster/9927


ICML 2021 时间检验奖


Bayesian Learning via Stochastic Gradient Langevin Dynamics

文献地址:https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf


ACL 2021 最佳论文奖


Vocabulary Learning via Optimal Transport for Neural Machine Translation

TL;DR:字节跳动火山翻译团队提出了一种新的词表学习方案 VOLT,在多种翻译任务上取得了SOTA

标记词汇的选择会影响机器翻译的性能。本文旨在找到“什么是好的词汇”,以及是否能够在不进行试训的情况下找到最佳词汇。

为了回答这些问题,作者首先从信息论的角度对词汇的作用进行了另一种理解。基于此,作者将词汇化的探索——寻找大小合适的最佳 token 词典——表述为一个最优传输(Optimal Transport,OT)问题。

作者提出了(VOcabulary Learning approach via optimal Transport,VOLT)——一种简单有效的无需试训的解决方案。实验结果表明,VOLT在不同的场景下,包括WMT-14英德翻译和TED多语言翻译,都优于广泛使用的词汇表。

在英德翻译中,VOLT实现了近70%的词汇量缩减和0.5 BLEU增益。此外,与BPE搜索相比,VOLT将英德翻译的搜索时间从384 个GPU小时减少到30个 GPU小时。文献地址:https://arxiv.org/abs/2011.12100

目录
打赏
0
0
0
0
371
分享
相关文章
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
The AI Scientist-v2 是由 Sakana AI 等机构开发的端到端自主科研系统,通过树搜索算法与视觉语言模型反馈实现科学假设生成、实验执行及论文撰写全流程自动化,其生成论文已通过国际顶会同行评审。
125 34
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
164 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
For Her:阿里云携手国际奥委会推出AI修复影片《永不失色的她》
For Her:阿里云携手国际奥委会推出AI修复影片《永不失色的她》
Languine:专为开发者设计的 AI 多语言翻译工具,快速生成100+种语言的准确翻译,简化应用程序的 i18n 国际化配置
Languine 是一款面向开发者的 AI 翻译工具,支持 100+ 种语言,自动化翻译流程,提升多语言应用开发效率。
180 15
Languine:专为开发者设计的 AI 多语言翻译工具,快速生成100+种语言的准确翻译,简化应用程序的 i18n 国际化配置
探索面向开放型问题的推理模型Marco-o1,阿里国际AI团队最新开源!
阿里国际AI团队发布的新模型Marco-o1,不仅擅长解决具有标准答案的学科问题(如代码、数学等),更强调开放式问题的解决方案。该模型采用超长CoT数据微调、MCTS扩展解空间等技术,提升了模型在翻译任务及复杂问题解决上的表现。研究团队还开源了部分数据和模型,供社区使用和进一步研究。
探索面向开放型问题的推理模型Marco-o1,阿里国际AI团队最新开源!
“龟速”到“光速”?算力如何加速 AI 应用进入“快车道”
阿里云将联合英特尔、蚂蚁数字科技专家,带来“云端进化论”特别直播。
52 11
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生
破茧成蝶:阿里云应用服务器让传统 J2EE 应用无缝升级 AI 原生时代
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
241 29

热门文章

最新文章