Hinton的预言要实现了!美加顶尖大学Nature发文:全科医学人工智能GMAI不止要取代「放射科医生」(2)

简介: Hinton的预言要实现了!美加顶尖大学Nature发文:全科医学人工智能GMAI不止要取代「放射科医生」

GMAI模型可以通过形式化表示医学知识来解决这些缺陷,例如知识图谱等结构可以让模型对医学概念和它们之间的关系进行推理;此外,在基于检索的方法的基础上,GMAI可以从现有的数据库中检索相关的背景,其形式包括文章、图像或之前的案例。


由此得到的模型可以提出一些警告,比如「这个病人可能会发展成急性呼吸窘迫综合征,因为这个病人最近因严重的胸腔创伤入院,而且尽管吸入的氧气量增加了,但病人动脉血中的氧分压却持续下降。」


由于GMAI模型甚至可能被要求提供治疗建议,尽管大部分是在观察数据的基础上进行训练,该模型推断和利用医学概念和临床发现之间的因果关系的能力将对临床适用性起到关键作用。


最后,通过获取丰富的分子和临床知识,GMAI模型可以通过借鉴相关问题的知识来解决数据有限的任务。


机遇


GMAI有潜力通过改善护理和减少临床医生的工作量来影响实际的医疗过程。


可控性(Controllability)


GMAI可以让用户精细地控制其输出的格式,使复杂的医疗信息更容易获得和理解,所以需要某种GMAI模型根据受众需求对模型输出进行重新复述。



由GMAI提供的可视化结果也需要精心定制,比如通过改变视角或用文字标注重要特征等,模型还可以潜在地调整其输出中特定领域的细节水平,或将其翻译成多种语言,与不同的用户进行有效沟通。


最后,GMAI的灵活性使其能够适应特定的地区或医院,遵循当地的习俗和政策,用户可能需要关于如何查询GMAI模型,以及有效利用其输出的正式指导。


适应性(Adaptability)


现有的医疗人工智能模型难以应对分布的转变,但由于技术、程序、环境或人口的不断变化,数据的分布可能会发生巨大变化。


GMAI可以通过上下文学习(in-context learning)跟上转变的步伐,例如医院可以教GMAI模型解释来自全新扫描仪的X射线,只需输入提示和几个样例即可。


也就是说,GMAI可以即时适应新的数据分布,而传统的医疗人工智能模型则需要在全新的数据集上重新训练;不过目前只有在大型语言模型中观察到了上下文学习(in-context learning)的能力。


为了确保GMAI能够适应上下文的变化,GMAI模型需要在来自多个互补数据源以及多样化的数据上进行训练。



比如为了适应2019年冠状病毒疾病的新变种,一个成功的模型可以检索过去变种的特征,并在面对查询中的新上下文时更新这些特征,一个临床医生可能直接输入「检查这些胸部X射线,看看是否有奥密克戎」。


模型可以对比德尔塔变体,考虑将支气管和血管周围的浸润作为关键信号。


尽管用户可以通过提示词手动调整模型行为,但新技术也可以发挥自动纳入人类反馈的作用。


用户可以对GMAI模型的每个输出进行评价或评论,就像ChatGPT使用的强化学习反馈技术,可以借此改变GMAI模型的行为。


适用性(Applicability)


大规模的人工智能模型已经成为众多下游应用的基础,例如GPT-3在发布后的几个月内就已经为不同行业的300多个应用程序提供了技术支持。


医学基础模型中,CheXzero可用于检测胸部X光片中的几十种疾病,并且不需要在这些疾病的显式标签上进行训练。


向GMAI的范式转变将推动具有广泛能力的大规模医疗AI模型的开发和发布,可以作为各种下游临床应用的基础:既可以直接使用GMAI的输出,也可以将GMAI的结果作为中间表示,后续再接入一个小型的领域内模型。


需要注意的是,这种灵活的适用性也是一把双刃剑,所有存在于基础模型中的故障都会在下游应用中继续传播。


挑战


虽然GMAI模型有诸多优势,但相比其他领域,医学领域的安全风险特别高,所以还需要应对确保安全部署的难题。


有效性/确认(Validation)


GMAI模型由于其前所未有的多功能性,所以想要进行能力验证也十分困难。

目前的人工智能模型都是针对特定任务而设计的,所以只需要在那些预定义的用例中进行验证即可,比如从大脑核磁共振成像中诊断出特定类型的癌症。


但GMAI模型还可以执行终端用户首次提出的先前未见过的任务(例如在脑部MRI中诊断其他疾病),如何预测所有的故障模式是一个更难的问题。



开发者和监管机构需要负责解释GMAI模型是如何被测试的,以及它们被批准用于哪些用例;GMAI界面本身的设计应该在进入未知领域时提出「标签外使用」的警告,而不能自信地编造不准确的信息。


更广泛地说,GMAI独特的广泛能力要求监管部门有远见,要求机构和政府政策适应新的范式,还将重塑保险安排和责任分配。


验证(Verification)


与传统的人工智能模型相比,GMAI模型可以处理异常复杂的输入和输出,使临床医生更难确定其正确性。


例如传统模型在对病人的癌症进行分类时,可能只考虑一项成像研究结果,只需要一名放射科医生或病理学家就可以验证该模型的输出是否正确。


而GMAI模型可能会考虑两种输入,并可能输出初始分类、治疗建议和涉及可视化、统计分析和文献参考的多模式论证。



在这种情况下,可能需要一个多学科小组(由放射科医生、病理科医生、肿瘤科医生和其他专家组成)来判断GMAI的输出是否正确。


因此,无论是在验证期间还是在模型部署之后,对GMAI输出的事实核查都是一个严峻的挑战。


创建者可以通过纳入可解释技术使GMAI输出更容易验证,例如,让GMAI的输出包括可点击的文献及具体的证据段落,使临床医生能够更有效地验证GMAI的预测。


最后,至关重要的是,GMAI模型应准确表达不确定性,防止用过度自信的陈述来误导用户。


社会偏见(Social bias)


医学人工智能模型可能会延续社会的偏见,并对边缘化人群造成伤害。

在开发GMAI时,这些风险可能会更加明显,海量数据的需求和复杂性会使模型难以确保没有不良的偏见。


GMAI模型必须得到彻底验证,以确保它们在特定人群(如少数群体)中的表现不会不佳。


即使在部署后,模型也需要进行持续的审计和监管,因为随着模型遇到新的任务和环境,可能会出现新的问题,迅速识别和修复偏见必须是开发者、供应商和监管者的首要任务。


隐私(Privacy)


GMAI模型的开发和使用对患者隐私构成了严重风险,可能会接触到丰富的病人特征,包括临床测量和信号、分子特征和人口统计信息以及行为和感官追踪数据。


此外,GMAI模型可能会使用更大的架构,更容易记忆训练数据并直接重复给用户,可能会暴露训练数据集中的敏感病人数据。


可以通过去身份化和限制对个别病人的信息收集量,减少暴露数据造成的损害。

隐私问题也并不限于训练数据,部署的GMAI模型也可能暴露当前病人的数据,例如提示性攻击可以欺骗GPT-3等模型,使其忽略之前的指令;恶意用户可以强迫模型忽略「不暴露信息」的指令以提取敏感数据。


参考资料:https://www.nature.com/articles/s41586-023-05881-4

相关文章
|
机器学习/深度学习 存储 人工智能
计算机发展前沿技术——医学领域的人工智能4
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
|
机器学习/深度学习 人工智能 监控
计算机发展前沿技术——医学领域的人工智能3
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
ly~
|
1月前
|
人工智能 自然语言处理 搜索推荐
人工智能在医学领域的应用
人工智能在医学领域的应用广泛,涵盖医学影像分析、医疗数据分析与预测、临床决策支持、药物研发、自然语言处理及智能健康管理等方面。它能提高诊断准确性,预测疾病风险与进展,优化治疗方案,加速药物研发,提升手术安全性,并实现个性化健康管理,有效推动了医疗科技的进步。
ly~
69 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Nature子刊:基于内生复杂性,自动化所新类脑网络构筑人工智能与神经科科学的桥梁
【9月更文挑战第11天】中国科学院自动化研究所的研究人员提出了一种基于内生复杂性的新型类脑网络模型,通过模拟人脑内部神经元间的复杂互动来提升AI系统的智能与适应性。此模型利用图神经网络(GNN)并设计分层图结构对应人脑不同功能区,引入自适应机制根据输入数据调整结构。实验表明,此模型在图像分类及自然语言处理等任务中表现出显著提升的性能,并且处理复杂数据时更具备适应性和鲁棒性。论文链接:https://www.nature.com/articles/s43588-024-00674-9。
58 7
|
6月前
|
机器学习/深度学习 数据采集 人工智能
【AI 场景】解释使用人工智能诊断医学图像中疾病的过程
【5月更文挑战第4天】【AI 场景】解释使用人工智能诊断医学图像中疾病的过程
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来医学之路——人工智能在医学中的应用
在现代医学领域,人工智能技术正逐渐崭露头角,为医疗诊断、药物研发、患者管理等方面带来了革命性的变化。本文将深入探讨人工智能在医学中的应用,并展望其未来的潜力。通过机器学习、自然语言处理、图像处理等技术手段,人工智能不仅提高了医学诊断的准确性和效率,还为个性化治疗和精确医学奠定了基础。
|
机器学习/深度学习 人工智能 算法
人工智能在医学领域的局限性
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
269 1
|
7天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
8天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
7天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
40 3

热门文章

最新文章

下一篇
无影云桌面