真·大语言模型Stable Diffusion时刻?StableLM开源,70亿参数在线体验

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 真·大语言模型Stable Diffusion时刻?StableLM开源,70亿参数在线体验




 新智元报道  

编辑:编辑部

【新智元导读】Stability AI也有大语言模型了,现在已有3B和7B的版本。大语言模型的Stable Diffusion时刻,是真来了。


大语言模型之战,Stability AI也下场了。近日, Stability AI宣布推出他们的第一个大语言模型——StableLM。划重点:它是开源的,在GitHub上已经可用。模型从3B和7B参数开始,随后会有15B到65B的版本。并且, Stability AI还发布了用于研究的RLHF微调模型。

项目地址:https://github.com/Stability-AI/StableLM/虽然OpenAI不open,但开源的社区已经百花齐放了。以前我们有Open Assistant、Dolly 2.0,现在,我们又有了StableLM。

实测体验


现在,我们可以在Hugging Face上试试StableLM微调聊天模型的demo。

具体StableLM能做到什么程度,一看便知。

比如,你可以问它如何制作花生酱三明治时,它会给你一个复杂、略显荒谬的食谱。或者写一首神经网络与符号人工智能的史诗级说唱对决:

再或者写一封「吉祥话邮件」(文本生成):

以及,用C语言计算生命的意义(代码生成):

不过,有国外的媒体记者亲测了一下StableLM,结果发现:在一本正经地胡说八道这方面,它跟前辈ChatGPT比起来,也是不遑多让。比如,如果问它2021年1月6日那天发生了什么?它会告诉你:特朗普的支持者控制了立法机关。如果Stable LM预期的主要用途并不是文本生成,那它可以做什么呢?如果拿这个问题亲自问它,它会说出这样一些套话,「它主要用作系统工程和体系结构中的决策支持系统,也可以用于统计学习、强化学习等领域。」另外,Stable LM显然缺乏对某些敏感内容的保护。比如,给它进行一下著名的「不要赞美希特勒」测试,它的回答也是令人大跌眼镜。不过,咱们倒是不急着管它叫「有史以来最糟糕的语言模型」,毕竟它是开源的,因此这个黑匣子AI允许任何人窥视盒子内部,查一查到底是哪些潜在原因导致了这个问题。

StableLM


Stability AI官方声称:Alpha版本的StableLM有30亿和70亿个参数,之后还有150亿到650亿参数的后续版本。StabilityAI还豪横地表示,开发者随便用。只要遵守相关条款,不管是检查、应用还是改编基础模型,想怎么来怎么来。StableLM功能强大,不光可以生成文本和代码,还能给下游应用提供技术基础。它是一个很好的范例,展示了小型、高效的模型通过适当训练就可以有足够高的性能。


早年间,Stability AI和非营利性研究中心Eleuther AI一起开发过早期的语言模型,可以说,Stability AI积淀很深。像什么GPT-J、GPT-NeoX和Pythia,这都是两家公司合作训练的产物,在The Pile开源数据集上训练完成。而后续的更多开源模型,比如Cerebras-GPT和Dolly-2都是上面三兄弟的后续产品。说回StableLM,它是在建立在The Pile基础上的新数据集上训练的,该数据集包含1.5万亿个token,大约是The Pile的3倍。模型的上下文长度为4096个token。在即将发布的技术报告中,Stability AI会公布模型的规模和训练设置。


作为概念验证,团队用斯坦福大学的Alpaca对模型进行了微调,并使用了最近的五个对话代理的数据集的组合:斯坦福大学的Alpaca、Nomic-AI的gpt4all、RyokoAI的ShareGPT52K数据集、Databricks labs的Dolly和Anthropic的HH。这些模型将作为StableLM-Tuned-Alpha发布。当然,这些微调过的模型仅仅用于研究,属于非商业性质。后续,Stability AI还将会公布新数据集的更多细节。其中,新数据集十分丰富,这也是为什么StableLM的性能很棒。虽说参数规模目前来看还是有点小(和GPT-3 1750亿个参数相比是这样的)。Stability AI表示,语言模型是数字时代的核心,我们希望每个人都能在语言模型中有发言权。而StableLM的透明性。可访问性、支持性等特点也是践行了这个观念。

  • StableLM的透明性:

体现透明性最好的方式就是开源。开发者可以深入到模型内部,验证性能、识别风险,并且一同开发一些保护措施。有需要的公司或部门还可以就着自己的需求对该模型进行调整。

  • StableLM的可访问性:

日常用户可以随时随地在本地设备上运行该模型。开发人员可以应用模型来创建并使用硬件兼容的独立应用程序。这样一来,AI所带来的经济利益就不会被某几个企业瓜分,红利属于所有日常用户和开发者社群。这是封闭模型所做不到的。

  • StableLM的支持性:

Stability AI建立模型支持用户们,而不是取代。换句话说,开发出来便捷好用的AI是为了帮助人们更高效地处理工作,提供人们的创造力、生产力。而非试图开发一个天下无敌的东西取代一切。Stability AI表示,目前这些模型已经在GitHub公布,未来还会有完整的技术报告问世。Stability AI期待和广泛的开发者和研究人员进行合作。同时,他们还表示将启动众包RLHF计划,开放助手合作,为AI助手创建一个开源的数据集。

开源先驱之一

Stability AI这个名字,对我们来说已经是如雷贯耳了。它正是大名鼎鼎的图像生成模型Stable Diffusion背后的公司。如今,随着StableLM的推出,可以说Stability AI在用AI造福所有人的路上越走越远了。毕竟,开源一向是他们的优良传统。在2022年,Stability AI提供了多种方式让大家使用Stable Diffusion,包括公开demo、软件测试版和模型的完整下载,开发人员可以随意使用模型,进行各种集成。作为一个革命性的图像模型,Stable Diffusion代表着一个透明、开放和可扩展的专有AI替代方案。显然,Stable Diffusion让大家看到了开源的各种好处,当然也会有一些无法避免的坏处,但这无疑是一个有意义的历史节点。(上个月,Meta的开源模型LLaMA的一场「史诗级」泄漏,产生了一系列表现惊艳的ChatGPT「平替」,羊驼家族像宇宙大爆炸一样噌噌地诞生:Alpaca、Vicuna、Koala、ChatLLaMA 、FreedomGPT、ColossalChat……)不过,Stability AI也警告说,虽然它使用的数据集应该有助于「将基本的语言模型引导至更安全的文本分布中,但并不是所有的偏见和毒性都可以通过微调来减轻。」

争议:该不该开源?


这些天,我们见证了开源文本生成模型井喷式的增长,因为大大小小的公司都发现了:在越来越有利可图的生成式AI领域,出名要趁早。过去一年里,Meta、Nvidia和像 Hugging Face支持的BigScience项目这样的独立团体,都发布了与GPT-4和Anthropic的Claude这些「私有」API模型的平替。很多研究者严厉地批评了这些跟StableLM类似的开源模型,因为可能会有不法分子别有用心地利用它们,比如创建钓鱼邮件,或者协助恶意软件攻击。但Stablity AI坚持认为:开源就是最正确的路。Stability AI强调,「我们把模型开源,是为了提高透明度和培养信任。研究人员可以深入了解这些模型,验证它们的性能、研究可解释性技术、识别潜在风险,并协助制定保护措施。」「对我们模型的开放、细粒度访问,允许广大的研究和学术界人士,开发出超越封闭模型的可解释性和安全技术。」Stablity AI的说法确实有道理。就算是GPT-4这样具有过滤器和人工审核团队的业内顶尖模型,也无法避免毒性。并且,开源模型显然需要更多的努力来调整、修复后端——特别是如果开发人员没有跟上最新的更新的话。其实追溯历史,Stability AI从来没有回避过争议。前一阵,它就处于侵权法律案件的风口浪尖,有人指控它使用网络抓取的受版权保护的图像,开发AI绘图工具,侵犯了数百万艺术家的权利。另外,已经有别有用心的人,利用Stability的AI工具,来生成许多名人的深度伪造色情图片,和充满暴力的图片。尽管Stability AI在博文中,强调了自己的慈善基调,但Stability AI也面临着商业化的压力,无论是艺术、动画、生物医学,还是生成音频领域。Stability AI CEO Emad Mostaque已经暗示了要上市的计划,Stability AI去年估值超过了10亿美元,并且获得了超过1亿美元的风投。不过,据外媒Semafor报道,Stability AI「正在烧钱,但在挣钱方面进展缓慢。」参考资料:https://www.theverge.com/2023/4/19/23689883/stability-ai-open-source-large-language-model-stablelmhttps://mashable.com/article/stablelm-stability-ai-language-model-explainedhttps://stability.ai/blog/stability-ai-launches-the-first-of-its-stablelm-suite-of-language-models


相关文章
|
8月前
|
存储 人工智能 物联网
【体验有奖】用 AI 画春天,函数计算搭建 Stable Diffusion WebUI
【体验有奖】用 AI 画春天,函数计算搭建 Stable Diffusion WebUI
|
8月前
|
数据采集 自然语言处理 前端开发
社区供稿 | 猎户星空百亿参数大模型 Orion-14B系列开源,一张3060就能跑(附魔搭社区推理微调最佳实践)
1月21日,傅盛在猎户星空大模型发布会上宣布,“为企业应用而生” 的开源百亿参数猎户星空大模型正式发布。猎户星空大模型(Orion-14B)是由猎户星空研发的预训练多语言大语言模型,以其140亿参数规模展现出了卓越的性能。
|
人工智能 自然语言处理 Java
首次体验中文竞技场大模型体验!!!
我将分别从知识常识、中文游戏、NLP专业领域、代码相关、写作创作、人类价值观六大领域测评不同模型的效果,以及一些看法。
|
8天前
|
人工智能 自然语言处理 机器人
OpenAI推出具有图像上传和分析功能的完整o1模型,并首次推出ChatGPT Pro
OpenAI推出具有图像上传和分析功能的完整o1模型,并首次推出ChatGPT Pro
|
2月前
|
人工智能 自然语言处理 测试技术
文生图参数量升至240亿!Playground v3发布:深度融合LLM,图形设计能力超越人类
【10月更文挑战第29天】Playground v3(PGv3)是最新发布的文本到图像生成模型,其在多个测试基准上取得了最先进的性能。与传统模型不同,PGv3采用了一种全新的结构,将大型语言模型与图像生成模型深度融合,展现出卓越的文本提示遵循、复杂推理和准确的文本渲染能力。此外,PGv3还具备超越人类的图形设计能力,支持精确的RGB颜色控制和多语言理解,为设计师和创意工作者提供了强大的工具。尽管存在一些挑战,但PGv3的发布标志着文本到图像生成技术的重大突破。
44 6
|
4月前
|
测试技术
10人明星团队炼出首个微调Llama 3.1 405B!角色扮演一秒入戏,代码全开源
【9月更文挑战第13天】近日,由十位明星研究员组成的团队成功微调了Llama 3.1 405B 模型,推出名为Hermes 3的先进开源模型,在多个基准测试中表现卓越。Hermes 3采用“聊天”训练范式,具备强大的推理和创造能力,能更好地响应命令性陈述,使用户更容易与其互动并获得有用信息。此外,该模型支持系统提示和工具使用功能,使其在处理复杂任务时更加高效。尽管Hermes 3在多种合成推理任务和创造性应用中表现出色,但作为微调模型,其性能受限于基础模型,并且开源特性可能带来安全性和隐私性方面的挑战。论文详见[nousresearch.com]。
71 8
|
5月前
|
数据采集 人工智能 自然语言处理
Llama 3.1发布:4050亿参数模型,迄今为止最强的开源大模型之一
Meta宣布发布Llama 3.1 405B,这一目前公开的最大且最先进的语言模型,标志着开源语言模型新时代的到来。Llama 3.1 405B不仅在常识理解、数学、工具使用及多语言翻译等功能上媲美顶尖AI模型,其8B和70B版本亦支持多种语言,拥有长达128K的上下文理解能力。该模型在150多个多语言基准测试中表现出色,并经过广泛的人工评估。为克服大规模训练挑战,Meta采用标准解码器架构和迭代后训练策略,大幅提升了数据质量和模型性能。此外,Llama 3.1通过监督微调、拒绝采样和直接偏好优化等手段提高了模型对指令的响应性和安全性。
97 2
|
6月前
|
自然语言处理 API Android开发
阿里Qwen2-72B大模型已是开源榜的王者,为什么还要推出其他参数模型,被其他模型打榜?
阿里云的Qwen2-72B模型在Hugging Face上荣登开源模型榜首,展现卓越性能,超越其他包括Meta的Llama-3在内的竞争者。Qwen2有多个参数版本,其中72B版本在自然语言理解、知识、代码等任务上表现出色。较小参数版本如7B模型在某些方面略逊一筹。推出不同参数模型可能是为了降低成本、加速迭代、构建丰富的模型生态。通过提供不同规模的模型,阿里云旨在促进技术研究和全场景应用,类似于微软Windows XP和阿里云OS生态的构建策略。
369 1
|
8月前
|
存储 自然语言处理 负载均衡
元象开源首个MoE大模型:4.2B激活参数,效果堪比13B模型,魔搭社区最佳实践来了
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
|
8月前
|
数据可视化 物联网 测试技术
零一万物Yi-1.5系列模型发布并开源!34B/9B/6B 多尺寸魔搭社区推理微调最佳实践教程来啦!
Yi-1.5是Yi的升级版本。 它使用 500B tokens的高质量语料库在 Yi 上持续进行预训练,并在 3M 个多样化的微调样本上进行微调。

热门文章

最新文章