PASCAL VOC数据集训练集、验证集、测试集的划分和提取,得到test.txt、train.txt、trainval.txt、val.txt文件代码

简介: PASCAL VOC数据集训练集、验证集、测试集的划分和提取,得到test.txt、train.txt、trainval.txt、val.txt文件代码

训练集、验证集、测试集按比例精确划分


创建py文件,将下属代码放入所创建的文件里,VOC2007数据集与py文件在同一目录下


4cbaf5e9016b4f68966af83cab7ca0b6.png


# 数据集划分
import os
import random
root_dir = './VOC2007/'
## trainval_percent为 train 与 val在整个数据集中的比例
trainval_percent = 0.8
# train_percent 为 train在整个数据集中的比例
train_percent = 0.7
# 因此上述配置得到
## 0.7train 0.1val 0.2test
xmlfilepath = root_dir + 'Annotations'
txtsavepath = root_dir + 'ImageSets/Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)  # 100
list = range(num)
tv = int(num * trainval_percent)  # 80
tr = int(tv * train_percent)  # 80*0.7=56
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open(root_dir + 'ImageSets/Main/trainval.txt', 'w')
ftest = open(root_dir + 'ImageSets/Main/test.txt', 'w')
ftrain = open(root_dir + 'ImageSets/Main/train.txt', 'w')
fval = open(root_dir + 'ImageSets/Main/val.txt', 'w')
for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()


实验结果


eac48f123a624330b89f9def65d33a7e.png

目录
打赏
0
0
0
0
691
分享
相关文章
UGMathBench:评估语言模型数学推理能力的动态基准测试数据集
近年来,人工智能蓬勃发展,自然语言模型(LLM)进展显著。语言模型被广泛应用于自动翻译、智能客服、甚至医疗、金融、天气等领域。而研究者们仍在不断努力,致力于提高语言模型的规模和性能。随着语言模型的蓬勃发展,评估一个语言模型的性能变得越来越重要。其中一个重要的评估指标,就是衡量语言模型的推理能力和解决数学问题的能力。
200 38
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
Apipost自动化测试:零代码!3步搞定!
传统手动测试耗时低效且易遗漏,全球Top 10科技公司中90%已转向自动化测试。Apipost无需代码,三步实现全流程自动化测试,支持小白快速上手。功能涵盖接口测试、性能压测与数据驱动,并提供动态数据提取、CICD集成等优势,助力高效测试全场景覆盖。通过拖拽编排、一键CLI生成,无缝对接Jenkins、GitHub Actions,提升测试效率与准确性。
123 11
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
Codex CLI是OpenAI推出的轻量级AI编程智能体,基于自然语言指令帮助开发者高效生成代码、执行文件操作和进行版本控制,支持代码生成、重构、测试及数据库迁移等功能。
332 0
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
Potpie.ai:比Copilot更狠!这个AI直接接管项目代码,自动Debug+测试+开发全搞定
Potpie.ai 是一个基于 AI 技术的开源平台,能够为代码库创建定制化的工程代理,自动化代码分析、测试和开发任务。
435 19
Potpie.ai:比Copilot更狠!这个AI直接接管项目代码,自动Debug+测试+开发全搞定
MySQL8使用物理文件恢复MyISAM表测试
MySQL8使用物理文件恢复MyISAM表测试
62 0
使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试
这篇文章是作者尚雷关于使用崖山YMP迁移Oracle/MySQL至YashanDB 23.2的验证测试分享。介绍了YMP的产品信息,包括架构、版本支持等,还详细阐述了外置库部署、YMP部署、访问YMP、数据源管理、任务管理(创建任务、迁移配置、离线迁移、校验初始化、一致性校验)及MySQL迁移的全过程。
使用ChatGPT生成登录产品代码的测试用例和测试脚本
使用ChatGPT生成登录产品代码的测试用例和测试脚本
170 35
使用ChatGPT生成关于登录产品代码的单元测试代码
使用ChatGPT生成关于登录产品代码的单元测试代码
94 16
Jmeter工具使用:HTTP接口性能测试实战
希望这篇文章能够帮助你初步理解如何使用JMeter进行HTTP接口性能测试,有兴趣的话,你可以研究更多关于JMeter的内容。记住,只有理解并掌握了这些工具,你才能充分利用它们发挥其应有的价值。+
279 23
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等