Expected more than 1 value per channel when training, got input size torch.Size

简介: 因为模型中用了batchnomolization,训练中用batch训练的时候当前batch恰好只含一个sample,而由于BatchNorm操作需要多于一个数据计算平均值,因此造成该错误。

Expected more than 1 value per channel when training, got input size torch.Size


训练的时候,batch size必须大于1,但是预测的时候,batch size可以等于1


原因:


因为模型中用了batchnomolization,训练中用batch训练的时候当前batch恰好只含一个sample,而由于BatchNorm操作需要多于一个数据计算平均值,因此造成该错误。


解决方法:


1. 加大batch_size


2.网络设置eval模式:


model=MyModel()
model.eval()


目录
相关文章
RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,
RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,
3020 0
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch】Expected hidden[0] size (2, 136, 256), got [2, 256, 256]
文章解决了PyTorch中LSTM模型因输入数据的批次大小不一致导致的“Expected hidden[0] size”错误,并提供了两种解决方案:调整批次大小或在DataLoader中设置drop_last=True来丢弃最后一个不足批次大小的数据。
125 1
解决AssertionError: size of input tensor and input format are different.tensor shape: (3, 138input_for
解决AssertionError: size of input tensor and input format are different.tensor shape: (3, 138input_for
493 0
|
Python
The size of tensor a (4) must match the size of tensor b (3) at non-singletonThe size of
The size of tensor a (4) must match the size of tensor b (3) at non-singletonThe size of
1241 0
|
并行计算
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the
600 0
成功解决ValueError: With n_samples=0, test_size=0.3 and train_size=None, the resulting train set will be
成功解决ValueError: With n_samples=0, test_size=0.3 and train_size=None, the resulting train set will be
成功解决ValueError: With n_samples=0, test_size=0.3 and train_size=None, the resulting train set will be
|
JSON 数据格式
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
585 0
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
|
PyTorch 算法框架/工具
pytorch报错 RuntimeError: The size of tensor a (25) must match the size of tensor b (50) at non-singleton dimension 1 怎么解决?
这个错误提示表明,在进行某个操作时,张量a和b在第1个非单例维(即除了1以外的维度)上的大小不一致。例如,如果a是一个形状为(5, 5)的张量,而b是一个形状为(5, 10)的张量,则在第二个维度上的大小不匹配。
4436 0

热门文章

最新文章