【Pytorch神经网络理论篇】 29 图卷积模型的缺陷+弥补方案

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 多层全连接神经网络被称为万能的拟合神经网络。先在单个网络层中用多个神经元节点实现低维的数据拟合,再通过多层叠加的方式对低维拟合能力进行综合,从而在理论上实现对任意数据的特征拟合。

同学你好!本文章于2021年末编写,获得广泛的好评!


故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,


Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录

本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345


欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~

815902569f6a467a99304f9ac1482386.png


图卷积模型在每个全连接网络层的结果中加入了样本间的特征计算。其述质是依赖深度学特征与缺陷。


2e1c79faa4704353357c38d6696c6af0.jpg


1.1 全连接网络的特征与缺陷


多层全连接神经网络被称为万能的拟合神经网络。先在单个网络层中用多个神经元节点实现低维的数据拟合,再通过多层叠加的方式对低维拟合能力进行综合,从而在理论上实现对任意数据的特征拟合。


4a97be1275f54818adf494cba15f1dae.png


图10-12左侧的两幅图表示前一层的两个神经元节点将数据在各自的直角坐标系中分成了两类。


图10-12中右侧的图表示后一层神经元将前一层的两个神经元结果融合到一起,实现最终的分类结果。


1.1.1 缺陷①:容易过拟合


从理论上来讲,如果全连接神经网络的层数和节点足够多,那么可以对任意数据进行拟合。然而,这一问题又会带来模型的过拟合问题。全连接神经网络不但会对正常的数据进行拟合,而且会对训练中的批次、样本中的噪声、样本中的非主要特征属性等进行拟合。这会使模型仅能使用在训练数据集上,无法用在类似于训练数据集的其他数据集上。


1.1.2 缺陷②:模型过大且不容易训练


目前,训练模型的主要方法都是反向链式求导,这使得全连接神经网络一旦拥有过多层数,就很难训练出来(一般只能支持6层以内)。即使使用BN分布式逐层训练等方式保证了多层训练的可行性,也无法承受模型中过多的参数带来的计算压力和对模型运行时的算力需求。


1.2 图卷积模型的缺陷(依赖于全连接网络的图模型的通病)


图卷积只是按照具有顶点关系信息的卷积核在每层的全连接网络上额外做一次过滤。


因为在图卷积模型中,也使用反向链式求导的方式进行训练,对图卷积模型深度的支持一般也只能到6层。


图卷积模型在层数受限的同时,也会存在参数过多且容易过拟合的问题。该问题也存在于GAT模型中。


1.3 弥补图卷积模型缺陷的方法(与全连接网络相同)


1.3.1 图卷积模型的层数受限


使用BN、分布式逐层训练等方法


1.3.2 图卷积模型容易出现过拟合


可以使用Dropout、正则化等方法,BN也有提高泛化能力的功能。


1.3.3 参数过多


使用卷积操作代替全连接的特征计算部分,使用参数共享来减小权重。


1.3.4 使用更好的模型


在图神经网络领域,还有一些更好的模型(例如SGC、GfNN和DGl等模型)。它们利用图的特性,从结构上对图卷积模型进行了进一步的优化,在修复图卷积模型原有缺陷的同时,又表现出了更好的性能。


1.4 从图结构角度理解图卷积原理及缺陷


图卷积模型的缺陷,其思路是将图结构数据当作矩阵数据,在规整的矩阵数据基础之上融合深度学习的计算方法。


在DGL库中实现的图卷积方法是基于图结构(空间域)的方式进行处理的。从效率角度来看,这样做有更大的优势,也更符合图计算的特点。


从基于图顶点传播的角度来看,图神经网络的过程可以理解为:基于顶点的局部邻居信息对顶点进行特征聚合,即将每个顶点及其周围顶点的信息聚合到一起以覆盖原顶点。


1.4.1 图神经网络的计算过程


如下图所示,描述目标顶点A在图神经网络中的计算过程:对于每一次计算,目标顶点A都对周围顶点特征执行一次聚合操作(任意深度)。


50bb532e95974e3bb68bf98515e81645.png


1.4.2 图卷积神经网络无法搭建过多层的原因


图卷积神经网络可以理解为每次执行聚合操作时都要对特征进行一次全连接的变换,并对聚合后的结果取平均值。层数过深会导致每个顶点对周围邻居的聚合次数过多。这种做法会导致所有顶点的值越来越相似,最终会收敛到同一个值,无法区分每个顶点的个性特征。


1.4.3 图注意力机制也存在无法搭建过多层的情况


图注意力机制中与图卷积的结构几乎一致,只不过是在顶点聚合的过程中对邻居顶点加入了一个权重比例。


e23b4b6182064456b82bd45d8a587f49.png

目录
相关文章
|
11天前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
31 5
|
22天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
11天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
36 2
|
14天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
12天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
34 1
|
23天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
25天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
41 2
|
25天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
35 1
|
28天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
下一篇
无影云桌面