图如何双曲建模?弗吉尼亚理工Amazon最新WWW2022「双曲神经网络:理论、架构和应用」教程

简介: 图如何双曲建模?弗吉尼亚理工Amazon最新WWW2022「双曲神经网络:理论、架构和应用」教程

【新智元导读】TheWebConf即将召开,来自弗吉亚理工和亚马逊等学者的《双曲神经网络》教程,值得关注!


TheWebConf是中国计算机学会(CCF)推荐的A类国际学术会议,由国际万维网会议委员会(IW3C2)和主办地地方团队合作组织,每年召开一次,今年是第31届会议,本年度论文录用率为17.7%,



图是普遍存在的数据结构,广泛应用于许多数据存储场景,包括社交网络、推荐系统、知识图谱和电子商务。这导致了GNN架构的兴起,用于分析和编码来自图的信息,以便在下游任务中获得更好的性能。


虽然图分析领域的初步研究是由神经结构驱动的,但最近的研究已经揭示了图数据集特有的重要属性,如层次结构和全局结构。这推动了对双曲空间的研究,因为它们能够有效地编码图数据集中存在的固有层次。


随后,该研究也被应用到其他领域,如自然语言处理和计算机视觉,取得了令人惊叹的结果。然而,进一步发展的主要挑战是双曲网络的晦涩,以及更好地理解必要的代数操作,以扩大应用到不同的神经网络结构。


在本教程中,我们的目标是向网络领域的研究人员和实践者介绍欧几里得运算的双曲等变,这是处理它们在神经网络架构中的应用所必需的。


此外,我们描述了GNN架构的流行双曲线变体,如递归网络、卷积网络和注意力网络,并解释了它们的实现,而不是欧几里得网络。


此外,我们还通过图分析、知识图谱推理、产品搜索、NLP和计算机视觉等领域的现有应用来激发我们的教程,并将性能提高与欧几里得的同类方法进行比较。


演讲内容



专知

,赞10


目录


结构


讲者介绍



Nurendra Choudhary是弗吉尼亚理工大学计算机科学系的博士生,在导师Chandan Reddy博士的指导下,他的研究重点是图分析和产品搜索领域的表示学习。


他在WWW、NeurIPS、WSDM和COLING等顶级会议上发表相关论文。他获得了国际信息技术学院计算语言学硕士学位,期间他获得了2018年CICLING的最佳论文奖。



Nikhil Rao是亚马逊的一名高级科学家,他在那里从事大规模图建模和算法的研究,以改进亚马逊搜索。在加入亚马逊之前,他是帕洛阿尔托Technicolor AI Labs的研究员。


Nikhil的研究兴趣和专长包括大规模优化、数据建模和挖掘,以及开发利用数据结构的算法。Nikhil在顶级会议和期刊上发表了几篇论文。他获得了来自UT Austin的ICES博士后奖学金和IEEE最佳学生论文奖。他拥有UW Madison的电气和计算机工程博士学位。



Karthik Subbian是亚马逊的首席科学家,拥有超过17年的行业经验。他领导着一个由科学家和工程师组成的团队来提高搜索质量和信任度。


在亚马逊,他领导了一个由科学家和工程师组成的团队,利用社交网络结构及其交互来探索信息传播和用户建模问题。此前,他在IBM T.J. Watson研究中心的商业分析和数学科学部门工作,是Facebook的一名研究科学家和负责人。


他的专业领域包括机器学习、信息检索和大规模网络分析。更具体地说,网络中的半监督和监督学习、个性化和推荐、信息扩散和表示学习。他拥有印度科学研究所(IISc)的硕士学位和明尼苏达大学的博士学位,都是计算机科学专业。


Karthik获得了许多著名奖项,包括IBM博士奖学金、2013年SIAM数据挖掘(SDM)会议的最佳论文奖和2013年INFORMS Edelman桂冠奖。


教程节选



参考资料:

[1]Code Library: GraphZoo: Facilitating learning, using, and designing graph processing pipelines/models systematically.

[2]Choudhary, N., Rao, N., Katariya, S., Subbian, K., & Reddy, C. K. (2022, February). ANTHEM: Attentive Hyperbolic Entity Model for Product Search. In Proceedings of the International Conference on Web Search and Data Mining 2022. (pdf)

[3]Choudhary, N., Rao, N., Katariya, S., Subbian, K., & Reddy, C. (2021). Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs. Advances in Neural Information Processing Systems, 34. (pdf)

[4]Choudhary, N., Rao, N., Katariya, S., Subbian, K., & Reddy, C. K. (2021, April). Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs. In Proceedings of the Web Conference 2021 (pp. 1373-1384). (pdf)

[5]Chami, I., Ying, Z., Ré, C., & Leskovec, J. (2019). Hyperbolic graph convolutional neural networks. Advances in neural information processing systems, 32, 4868-4879. (pdf) Ganea, O. E., Bécigneul, G., & Hofmann, T. (2018). Hyperbolic neural networks. Advances in neural information processing systems, 5345-5355. (pdf) Shimizu, R., Mukuta, Y., & Harada, T. (2021). Hyperbolic neural networks++. Interna

相关文章
|
1月前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
8天前
|
机器学习/深度学习 网络架构
揭示Transformer重要缺陷!北大提出傅里叶分析神经网络FAN,填补周期性特征建模缺陷
近年来,神经网络在MLP和Transformer等模型上取得显著进展,但在处理周期性特征时存在缺陷。北京大学提出傅里叶分析网络(FAN),基于傅里叶分析建模周期性现象。FAN具有更少的参数、更好的周期性建模能力和广泛的应用范围,在符号公式表示、时间序列预测和语言建模等任务中表现出色。实验表明,FAN能更好地理解周期性特征,超越现有模型。论文链接:https://arxiv.org/pdf/2410.02675.pdf
88 68
|
3天前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
74 8
|
2月前
|
Cloud Native 安全 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
54 4
|
2月前
|
监控 持续交付 API
深入理解微服务架构及其在现代应用开发中的应用
深入理解微服务架构及其在现代应用开发中的应用
30 4
|
2月前
|
运维 Kubernetes Docker
深入理解容器化技术及其在微服务架构中的应用
深入理解容器化技术及其在微服务架构中的应用
68 1
|
2月前
|
边缘计算 监控 自动驾驶
揭秘云计算中的边缘计算:架构、优势及应用场景
揭秘云计算中的边缘计算:架构、优势及应用场景
|
2月前
|
存储 监控 API
深入解析微服务架构及其在现代应用中的实践
深入解析微服务架构及其在现代应用中的实践
54 0
|
2月前
|
监控 物联网 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
37 0

热门文章

最新文章