从手工作业到工业革命!Nature文章:生物图像分析被深度学习彻底改变的五个领域

简介: 从手工作业到工业革命!Nature文章:生物图像分析被深度学习彻底改变的五个领域
【新智元导读】生物学和深度学习的组合在时下很热门,但实际上这场变革早已开启。


一立方毫米,听起来不大,也就是一粒芝麻的大小,但在人类的大脑中,这点儿空间却能够容纳由1.34亿个突触相连接的大约5万条神经线(neural wires)



为了生成原始数据,生物科学家需要使用连续超薄切片电镜的方法,在11个月内对数以千计的组织碎片进行成像。


而最终获得的数据量也达到了惊人的1.4 PetaBytes(即1400TB,相当于大约200万张CD-ROM的容量) ,对于研究人员来说这简直就是个天文数字。


哈佛大学的分子和细胞生物学家Jeff Lichtman表示,如果用纯手工作业,人类根本不可能手动追踪所有的神经线,地球上甚至都没有足够多的人能够真正有效地完成这项工作。



显微镜技术的进步带来了大量的成像数据,但数据量太大,人手不足,这也是连接组学(Connectomics,一门研究大脑结构和功能连接的学科),以及其他生物领域学科中的常见现象


计算机科学的使命正是为解决这类人力资源不足的问题,尤其是经过优化的深度学习算法,可以从大规模数据集中挖掘出数据模式


麻省理工学院布罗德研究所和哈佛大学剑桥分校的计算生物学家Beth Cimini表示,过去几年中,深度学习在生物学领域有着巨大的推动作用,并开发了很多研究工具。



下面是Nature编辑总结深度学习带来变革的五个生物学图像分析领域


大规模连接组学


深度学习使研究人员能够从果蝇、老鼠甚至人类身上生成越来越复杂的连接体。

这些数据可以帮助神经科学家理解大脑是如何工作的,以及大脑结构在发育和疾病过程中是如何变化的,但神经连接并不容易绘制


2018年,Lichtman谷歌在加州山景城的连接组学负责人Viren Jain联手,为团队所需的人工智能算法寻找解决方案。


连接组学中的图像分析任务实际上是非常困难的,你必须能够追踪这些细线、细胞的轴突和树突,还要跨越很长的距离,传统的图像处理方法在这项任务中会出现很多错误,基本上对这项任务没有用处


这些神经线可能比一微米还细,延伸数百微米甚至跨越毫米级的组织。


深度学习算法不仅能够自动化地分析连接组学数据,同时还能保持很高的精度


研究人员可以使用包含感兴趣特征的标注数据集来训练复杂的计算模型,以便能够快速识别其他数据中的相同特征。


欧洲分子生物学实验室的计算机科学家Anna Kreshuk认为,使用深度学习算法的过程类似于「举个例子」,只要例子够多,你就能把所有问题都解决掉。



但即使是使用深度学习,Lichtman和Jain团队还要完成一项艰巨的任务:绘制人类大脑皮层的片段。


收集数据阶段,仅仅拍摄5000多个超薄的组织切片就花了326天


两名研究人员花了大约100个小时来手动标注图像和追踪神经元,创建了一个ground truth数据集以训练算法。


使用标准数据训练后的算法就可以自动将图像拼接在一起,识别出神经元和突触,并生成最终的连接体。


Jain的团队为解决这个问题也投入了大量的计算资源,包括数千个张量处理单元(TPU) ,还耗费了几个月时间来预处理100万TPU小时所需的数据。


虽然研究人员已经获取到当下能收集到最大规模的数据集,能够在非常精细的水平进行重建,但这个数据量大约只占人类大脑的0.0001%


随着算法和硬件的改进,研究人员应该能够绘制出更大的大脑区域,同时能够分辨出更多的细胞特征,比如细胞器,甚至蛋白质。


至少,深度学习提供了一种可行性


虚拟组织学


组织学(histology)是医学上的一个重要工具,用于在化学或分子染色的基础上诊断疾病。


但是整个过程费时费力,通常需要几天甚至几周的时间才能完成。


先将活组织检查切成薄片,染色显示细胞和亚细胞特征,然后病理学家通过阅读结果并对之进行解释。


加州大学洛杉矶分校的计算机工程师Aydogan Ozcan认为可以通过深度学习的方式对整个过程进行加速。



他训练了一个定制的深度学习模型,通过计算机模拟给一个组织切片上染色,将同一切片上数以万计的未染色和染色的样本喂给模型,并让模型计算出它们之间的差异。


虚拟染色除了有时间优势(瞬间就能完成)外,病理学家通过观察发现,虚拟染色和传统染色几乎毫无区别,专业人士也无法分辨。


实验结果表明,该算法可以在几秒钟内复制乳腺癌生物标志物HER2的分子染色,而该过程在组织学实验室通常需要至少24小时


三位乳腺病理学家组成的专家小组对这些图像进行了评价,认为它们的质量和准确性与传统的免疫组织化学染色相当。


Ozcan看到了将虚拟染色商业化后在药物研发中的应用前景,但他更希望借此消除组织学对有毒染料和昂贵染色设备的需求。


寻找细胞


如果你想从细胞图像中提取数据,那你必须知道细胞在图像中的实际位置,这一过程也称为细胞分割(cell segmentation)。


研究人员需要在显微镜下观察细胞,或者在软件中一张一张地勾勒出细胞的轮廓



加州理工学院的计算生物学家Morgan Schwartz正在寻求自动化处理的方法,随着成像数据集变得越来越大,传统的手工方法也遇到了瓶颈,有些实验如果不自动化就无法进行分析



Schwartz的研究生导师、生物工程师David Van Valen创建了一套人工智能模型,并发布在了deepcell.org网站上,可以用来计算和分析活细胞和保存组织图像中的细胞和其他特征。



Van Valen与斯坦福大学癌症生物学家Noah Greenwald等合作者一起还开发了一个深度学习模型Mesmer,可以快速、准确地检测不同组织类型的细胞和细胞核


据Greenwald说,研究人员可以利用这些信息来区分癌症组织和非癌组织,并寻找治疗前后的差异,或者基于成像的变化来更好地了解为什么一些患者会有反应或者没有反应,以及确定肿瘤的亚型。


定位蛋白质


人类蛋白质图谱项目利用了深度学习的另一个应用:细胞内定位。


斯坦福大学的生物工程师Emma Lundberg表示,在过去几十年间,该项目生成了数百万张图像,描绘了人体细胞和组织中的蛋白质表达。



刚开始的时候,项目参与者需要手动对这些图像进行标注,但这种方法不可持续,Lundberg开始寻求人工智能算法的帮助。


过去几年,她开始在Kaggle挑战赛中发起众包解决方案,科学家和人工智能爱好者为了奖金会完成各种计算任务,两个项目的奖金分别为3.7万美元2.5万美元


参赛者会设计有监督的机器学习模型,并对蛋白质图谱图像进行标注。


Kaggle挑战赛获得的成果也让项目成员大吃一惊,获胜的模型性能比Lundberg先前在蛋白质定位模式的多标签分类方面要高出约20% ,并且可以泛化到细胞系(cell line)中,还取得了新的行业突破,对存在于多个细胞位置的蛋白质进行准确的分类。



有了模型,生物实验就可以继续推进,人类蛋白质的位置很重要,因为相同的蛋白质在不同的地方表现不同,知道一种蛋白质是在细胞核还是在线粒体中,这有助于理解它的功能。


追踪动物行为


Mackenzie Mathis是瑞士洛桑联邦理工学院校园生物技术中心的神经科学家,长期以来一直对大脑如何驱动行为感兴趣。



为此,她开发了一个名为DeepLabCut的程序,使神经科学家能够从视频中追踪动物的姿势和精细动作,并将「猫咪视频」和其他动物的记录转化为数据。


DeepLabcut提供了一个图形用户界面,研究人员只需点击一个按钮,就可以上传并标注视频并训练深度学习模型。


今年4月,Mathis的团队扩展了该软件,可以同时为多种动物估计姿势,这对人类和人工智能来说都是一个全新的挑战。


将DeepLabCut训练后的模型应用到狨猴身上,研究人员发现,当这些动物靠得很近时,它们的身体会排成一条直线,看向相似的方向,而当它们分开时,它们倾向于面对面。


生物学家通过识别动物的姿势,来了解两种动物是如何交互、注视或观察世界的。


参考资料:https://www.nature.com/articles/d41586-022-02964-6?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=CONR_JRNLS_AWA1_GL_SCON_SMEDA_NATUREPORTFOLIO

相关文章
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习中的图像风格迁移
【9月更文挑战第26天】本文将探讨如何利用深度学习技术,实现图像风格的转换。我们将从基础的理论出发,然后逐步深入到具体的实现过程,最后通过代码实例来展示这一技术的实际应用。无论你是初学者还是有经验的开发者,都能在这篇文章中找到有价值的信息。让我们一起探索深度学习的奥秘吧!
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
利用深度学习实现图像风格迁移
【8月更文挑战第73天】本文通过深入浅出的方式,介绍了一种使用深度学习技术进行图像风格迁移的方法。我们将探讨如何将一张普通照片转化为具有著名画作风格的艺术作品。文章不仅解释了背后的技术原理,还提供了一个实际的代码示例,帮助读者理解如何实现这一过程。
|
19天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
36 7
|
22天前
|
机器学习/深度学习 编解码 算法
什么是超分辨率?浅谈一下基于深度学习的图像超分辨率技术
超分辨率技术旨在提升图像或视频的清晰度,通过增加单位长度内的采样点数量来提高空间分辨率。基于深度学习的方法,如SRCNN、VDSR、SRResNet等,通过卷积神经网络和残差学习等技术,显著提升了图像重建的质量。此外,基于参考图像的超分辨率技术通过利用高分辨率参考图像,进一步提高了重建图像的真实感和细节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
185 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
17天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
26 0
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
图像检测【YOLOv5】——深度学习
Anaconda的安装配置:(Anaconda是一个开源的Python发行版本,包括Conda、Python以及很多安装好的工具包,比如:numpy,pandas等,其中conda是一个开源包和环境管理器,可以用于在同一个电脑上安装不同版本的软件包,并且可以在不同环境之间切换,是深度学习的必备平台。) 一.Anaconda安装配置. 1.首先进入官网:https://repo.anaconda.com,选择View All Installers. 2.打开看到的界面是Anaconda的所以安装包版本,Anaconda3就代表是Python3版本,后面跟的是发行日期,我选择了最近的2022
73 28
|
1月前
|
机器学习/深度学习 数据挖掘 数据处理
深度学习之卫星图像中的环境监测
基于深度学习的卫星图像环境监测是指通过使用深度学习模型处理和分析来自卫星的遥感数据,以实现对地球环境的自动化监测和分析。这项技术极大提升了环境监测的效率、精度和规模,应用于气候变化研究、生态保护、自然灾害监测、城市扩张评估等多个领域。
95 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习之生物启发的学习系统
基于深度学习的生物启发学习系统(Biologically Inspired Learning Systems)旨在借鉴生物大脑的结构和学习机制,设计出更高效、更灵活的人工智能系统。
24 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
【9月更文挑战第24天】近年来,深度学习在人工智能领域取得巨大成功,但在连续学习任务中面临“损失可塑性”问题,尤其在深度强化学习中更为突出。加拿大阿尔伯塔大学的研究人员提出了一种名为“持续反向传播”的算法,通过选择性地重新初始化网络中的低效用单元,保持模型的可塑性。该算法通过评估每个连接和权重的贡献效用来决定是否重新初始化隐藏单元,并引入成熟度阈值保护新单元。实验表明,该算法能显著提升连续学习任务的表现,尤其在深度强化学习领域效果明显。然而,算法也存在计算复杂性和成熟度阈值设置等问题。
62 2
下一篇
无影云桌面