零售银行的“制胜秘籍”:大数据驱动营销及管理

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

随着国内利率市场化加快推进、经济增速放缓、国民收入和财富逐步上升,零售业务对银行收入及利润的贡献日益见长,科学有效地引领零售业务持续增长已成为国内领先银行的首要任务。然而,零售客户的需求日趋复杂和个性化,市场竞争愈加激烈。在此背景下,有效利用核心技术、业务的集约式增长以及前线产能的加速提升,成为各家银行互争雄长的制胜关键。

麦肯锡近年来成功帮助多家国内外领先银行完成大数据驱动的零售银行转型。大量实战经验证明,这是一场以技术变革驱动的精益增长之战,而取胜“法宝”就是以客户为中心的全周期、多渠道精细化管理,更为敏捷的产品开发与客户体验创新,更为高效的风险管理,以及全程的销售留痕与产能提升。以大数据驱动营销及管理的精益提升,将把商业资源有效引向价值和潜力最大的客户,最大限度地释放前线产能,并将重定义客户与银行间全周期、多渠道、多触点的紧密关系。

在我们近年的大数据转型项目中,麦肯锡的银行咨询专家团队携手近千名数据科学家、产品软件工程师与客户的零售行长、CIO、CDO及其业务、科技团队紧密合作,实现快速迭代和敏捷开发,以及众多超常规、全方位的零售银行精益增长。其中以大数据推动的客户精益管理、流程、客户体验再造,实现了银行15%-25%的收入增长;根据交易数据、需求预测和前线人员的实时匹配,释放产能,降低了前、后台5-15%的运营成本;新建的大数据预测系统削减了30-35%的不良贷款流入总量和15-20%的风险加权资产(RWA)。

长期以来,国内银行皆以产品驱动增长、数据基础薄弱零散、数据科学家团队匮乏,这些是否会阻碍我们形成精准的客户洞见并实现弯道超车呢?在大数据算法和机器学习逐步成熟的今天,巨大的机会窗口凸显。银行可在数据治理、组织架构和双速IT三大基础设施之上,通过大数据驱动的业务用例发掘价值,用模型/销售留痕/闭环反馈实现价值,并固化为自身的标准化作业。客户思维、敏捷开发,搭建智能化、轻型化、规模化的数据链路是大数据驱动零售银行转型的必备元素。

放眼未来,全球的银行业正在大数据技术的带领下,进行精益增长的重组和变革,同时搭建全新的能力平台。本书以麦肯锡在零售银行的实践经验抛砖引玉,探讨在中国实现大数据零售精益增长的核心能力及有效路径。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
97 0
|
2月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
72 0
|
26天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
4月前
|
自然语言处理 供应链 数据可视化
大数据在市场营销中的应用案例:精准洞察,驱动增长
【8月更文挑战第25天】大数据在市场营销中的应用案例不胜枚举,它们共同展示了大数据技术在精准营销、市场预测、用户行为分析等方面的巨大潜力。通过深度挖掘和分析数据,企业能够更加精准地洞察市场需求,优化营销策略,提升市场竞争力。未来,随着大数据技术的不断发展和普及,其在市场营销领域的应用将更加广泛和深入。
1252 3
|
4月前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
5月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
715 8
|
5月前
|
人工智能 自然语言处理 数据管理
数据平台演进问题之自然语言处理技术在AI驱动的数据库中的作用是什么
数据平台演进问题之自然语言处理技术在AI驱动的数据库中的作用是什么
|
4月前
|
人工智能 搜索推荐 算法
📈业绩飙升的秘密:AI驱动的个性化营销策略,职场营销新高度!
【8月更文挑战第1天】在激烈的商业竞争中,AI驱动的个性化营销正成为企业突破的关键。通过大数据收集用户多维度信息,形成精准用户画像;利用智能推荐系统实现“千人千面”,大幅提升用户满意度和转化率;并通过实时优化策略快速响应市场变化。简化的Python示例展示了基于用户画像的推荐算法应用。AI营销以其高效灵活的特点,已成为职场营销的新常态,助力企业在数据时代掌握营销主动权。
69 0
|
5月前
|
存储 分布式计算 数据可视化
ERP系统中的大数据分析与处理:驱动企业智能决策
【7月更文挑战第29天】 ERP系统中的大数据分析与处理:驱动企业智能决策
419 0
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
数据平台演进问题之数据的资产怎么被AI驱动的数据库理解
数据平台演进问题之数据的资产怎么被AI驱动的数据库理解