实现mnist手写数字识别

简介: 实现mnist手写数字识别

前言


实现mnist手写数字识别


一、代码实现

import tensorflow as tf
from tensorflow.keras.datasets import mnist
import matplotlib as plt
from tensorflow.keras import models
from tensorflow.keras import layers
(train_images,train_labels), (test_images, test_labels) = mnist.load_data()
# train_images.shape: (60000,28,28) 6万张图像,每一张图像都是28*28的像素图片。
# 构建神经网络
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28*28,)))
# 几分类就写几,这里是10分类。
network.add(layers.Dense(10, activation='softmax'))
# compile(编译):损失函数、优化器、在训练和测试过程中需要监控的指标
# metrics:指标列表,对于分类问题,我们一般将该列表设置为metrics=['accuracy'],均方误差回归损失用mse
# 多分类损失用'categorical_crossentropy',二分类损失用'binary_crossentropy'
network.compile(optimizer='rmsprop',
               loss='categorical_crossentropy',
               metrics=['accuracy'])
# 数据处理:将其变换为网络要求的形状,并且进行归一化
train_images = train_images.reshape((60000, 28*28))
train_images = train_images.astype('float32')/255
test_images = test_images.reshape((10000, 28*28))
test_images = test_images.astype('float32')/255
from tensorflow.keras.utils import to_categorical
# to_categorical:将类别向量转换为二进制(只有0和1)的矩阵类型表示。即将原有的类别向量转换为独热编码的形式。
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
# 开始训练
network.fit(train_images, train_labels, epochs=20, batch_size=128)
# 评估
test_loss, test_acc = network.evaluate(test_images, test_labels)
print(test_loss, test_acc)

二、一些注意问题


2-1、网络构建方式


可以是(通过构建器创建):


network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28*28,)))
network.add(layers.Dense(10, activation='softmax'))


也可以是(通过add方法构建):

network = models.Sequential([
  layers.Dense(512, activation='relu', input_shape=(28*28,)),
  layers.Dense(10, activation='softmax'),
])

2-2、确定模型输入数据的规格


第一层需要通过参数传递告知模型数据规格,后边的层不需要,因为可以自动的根据第一层的输出进行推导。

通过input_shape参数:

network.add(layers.Dense(512, activation='relu', input_shape=(28*28,)))

也可以通过input_dim参数设定,和上边的含义类似:

network.add(layers.Dense(512, activation='relu', input_dim=28*28))


注意:input_shape=(28✖28,)代表的是输入的数据是28✖28维的一阶向量。input_shape的格式是元组,所以必须写为(28*28,)这种形式。


2-3、全连接层内部的张量运算


例子:

keras.layers.Dense(512, activation='relu')


注解:输入一个2D张量,返回另一个2D张量。函数如下所示

公式表示:output = relu(dot(w, input) + b)

即:输入张量和张量w(给定形状的随机张量)之间的点积运算(dot),得到的2D张量与向量b之间的加法运算,最后经过relu激活函数(即max(x,0)),relu运算和加法运算都是逐元素运算。w和b被称之为权重和可训练参数,一开始这些权重矩阵取较小的随机值,这一步叫做随机初始化。下一步是根据反馈信号逐渐调节这些权重。这个逐渐调节的过程叫做训练。


2-4、训练的具体步骤。


1、抽取训练样本x和对应目标y组成的数据批量

2、在x上运行网络(这一步叫做前向传播),得到预测值y_pred。(张量运算)

3、计算网络在这批数据上的损失,衡量y_pred和y之间的距离。

4、更新网络的权重,使得网络在这批数据上的损失略微下降。

注意:训练的过程就是重复上述步骤,最终使得预测值y_pred和预期目标y之间的距离非常小。


2-5、有关于点积的一些理解

keras.layers.Dense(512, activation='relu')


注意:两个向量之间的点积是一个标量,而且只有元素个数相同的向量之间才能做点积, 逐元素相乘然后相加。

import numpy as np
np.dot([1, 2],[3,4])
# 输出
# 11


一般:两个矩阵之间的点积,对于两个矩阵x和y,当且仅当x.shape[1] == y.shape[0] 时,你才可以对它们做点积,得到的结果是一个形状为(x.shape[0], y.shape[1])的矩阵,即x的行与y的列相乘后的和相加。


np.dot([[1, 2],[1,2]], [[3, 4],[3,4]])
# 输出
# array([[ 9, 12],
#       [ 9, 12]])


参考文章:

通过Sequential快速搭建tensorflow模型.

Input_shape参数.

Keras中文文档.

优化器optimizers.

目标函数objectives.

Sequential模型方法.


总结


有些事情努力了就好啦,虽然结果惨不忍睹。。。😔


相关文章
|
6月前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
3月前
|
机器学习/深度学习 监控 数据处理
手写数字识别mnist
本文介绍了使用Keras框架对MNIST手写数字识别数据集进行处理、建立神经网络模型、编译、训练、评估直至模型精度分析的完整流程。
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
利用PyTorch实现基于MNIST数据集的手写数字识别
利用PyTorch实现基于MNIST数据集的手写数字识别
134 2
|
6月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
用TensorFlow实现MNIST神经网络
用TensorFlow实现MNIST神经网络
|
6月前
|
机器学习/深度学习 算法 PyTorch
pytorch实现手写数字识别 | MNIST数据集(全连接神经网络)
pytorch实现手写数字识别 | MNIST数据集(全连接神经网络)
|
机器学习/深度学习 数据可视化 自动驾驶
图像分类 | 基于 MNIST 数据集
图像分类 | 基于 MNIST 数据集
|
机器学习/深度学习 TensorFlow 算法框架/工具
【深度学习】基于tensorflow的服装图像分类训练(数据集:Fashion-MNIST)
【深度学习】基于tensorflow的服装图像分类训练(数据集:Fashion-MNIST)
340 0
|
机器学习/深度学习 存储 人工智能
PyTorch 之 神经网络 Mnist 分类任务
在上一篇博客当中,我们通过搭建 PyTorch 神经网络实现了气温预测,这本质上是一个回归任务。在本次博文当中,我们使用 PyTorch 做一个分类任务。
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow MNIST手写数字识别(神经网络极简版)
TensorFlow MNIST手写数字识别(神经网络极简版)
TensorFlow MNIST手写数字识别(神经网络极简版)
|
机器学习/深度学习 并行计算 数据可视化
pytorch实现mnist手写数字识别
pytorch实现mnist手写数字识别
pytorch实现mnist手写数字识别

相关实验场景

更多
下一篇
无影云桌面