SLS智能巡检最佳实践:针对无标签数据

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 日志服务 SLS 智能异常分析 APP 提供自动化、智能化模型训练能力,可以根据设定的历史数据区间进行监督建模。您可以使用模型训练任务通过监督的方式加强对自身数据的异常学习,来提升未来的异常预警的准确率,模型训练任务主要有以下优势:直接使用SLS的智能巡检功能,准确率不及预期,可以选择使用SLS的模型训练任务,来提升异常检测的准确性智能巡检检测出来的异常和您所认为的异常之间可能存在gap,这种情况

日志服务 SLS 智能异常分析 APP 提供自动化、智能化模型训练能力,可以根据设定的历史数据区间进行监督建模。您可以使用模型训练任务通过监督的方式加强对自身数据的异常学习,来提升未来的异常预警的准确率,模型训练任务主要有以下优势:

  1. 直接使用SLS的智能巡检功能,准确率不及预期,可以选择使用SLS的模型训练任务,来提升异常检测的准确性
  2. 智能巡检检测出来的异常和您所认为的异常之间可能存在gap,这种情况也建议您通过有监督的模型训练任务来自适应的检测所需要的异常类型。

阅读本文之前请先阅读:

多维指标智能巡检

流程概述

不同点主要为两个部分

  • 数据形态:没有异常标签
  • 数据特征配置不同

对于注入异常的方式,推荐数据是长期平稳的状态,在注入异常阶段尽量是无其他异常状态。

数据特征配置

这里采用的是我们SLS控制台的各种方法的延时来做演示。

  • 时间: 对应于时间列,以及时间粒度
  • 实体: 实体维度选择
  • 特征: 特征列选择
  • 注入结果:
  • 保存: 将注入异常后的结果数据保存在project: 源project logstore: 源logstore_withlabel中(举例说明:若数据源配置中的project为sls-test-demo,logstore为sls-test-logstore,则存储的数据位于project为sls-test-demo,logstore为sls-test-logstore_withlabel中)
  • 不保存:将注入异常后的结果数据不保存
  • 异常率:注入异常的数量所占数据总量的比例,随机均匀分布在整个数据集上的,大小范围为 [0.00001,0.01]

如果训练集时间为14天,验证集为7天,时间粒度为60s,异常率为0.001 则:

N_Train = 14 * 24 * 60 , N_Val = 7 * 24 * 60 

N_Train_Anomaly = N_Train * 0.001 , N_Val_Anomaly = N_Val * 0.001

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
15天前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
123 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
1月前
|
XML JSON 监控
告别简陋:Java日志系统的最佳实践
【10月更文挑战第19天】 在Java开发中,`System.out.println()` 是最基本的输出方法,但它在实际项目中往往被认为是不专业和不足够的。本文将探讨为什么在现代Java应用中应该避免使用 `System.out.println()`,并介绍几种更先进的日志解决方案。
48 1
|
15天前
|
SQL Oracle 关系型数据库
【赵渝强老师】Oracle的联机重做日志文件与数据写入过程
在Oracle数据库中,联机重做日志文件记录了数据库的变化,用于实例恢复。每个数据库有多组联机重做日志,每组建议至少有两个成员。通过SQL语句可查看日志文件信息。视频讲解和示意图进一步解释了这一过程。
|
1月前
|
数据采集 机器学习/深度学习 存储
使用 Python 清洗日志数据
使用 Python 清洗日志数据
37 2
|
2月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
49 2
|
2月前
|
开发者 Python
基于Python的日志管理与最佳实践
日志是开发和调试过程中的重要工具,然而,如何高效地管理和利用日志常常被忽略。本文通过Python中的logging模块,探讨如何使用日志来进行调试、分析与问题排查,并提出了一些实际应用中的优化建议和最佳实践。
|
2月前
|
SQL 人工智能 运维
在阿里云日志服务轻松落地您的AI模型服务——让您的数据更容易产生洞见和实现价值
您有大量的数据,数据的存储和管理消耗您大量的成本,您知道这些数据隐藏着巨大的价值,但是您总觉得还没有把数据的价值变现出来,对吗?来吧,我们用一系列的案例帮您轻松落地AI模型服务,实现数据价值的变现......
205 3
|
3月前
|
人工智能 Java Spring
Spring框架下,如何让你的日志管理像‘AI’一样智能,提升开发效率的秘密武器!
【8月更文挑战第31天】日志管理在软件开发中至关重要,不仅能帮助开发者追踪问题和调试程序,还是系统监控和运维的重要工具。在Spring框架下,通过合理配置Logback等日志框架,可大幅提升日志管理效率。本文将介绍如何引入日志框架、配置日志级别、在代码中使用Logger,以及利用ELK等工具进行日志聚合和分析,帮助你构建高效、可靠的日志管理系统,为开发和运维提供支持。
71 0
|
3月前
|
SQL 数据库 Java
Hibernate 日志记录竟藏着这些秘密?快来一探究竟,解锁调试与监控最佳实践
【8月更文挑战第31天】在软件开发中,日志记录对调试和监控至关重要。使用持久化框架 Hibernate 时,合理配置日志可帮助理解其内部机制并优化性能。首先,需选择合适的日志框架,如 Log4j 或 Logback,并配置日志级别;理解 Hibernate 的多级日志,如 DEBUG 和 ERROR,以适应不同开发阶段需求;利用 Hibernate 统计功能监测数据库交互情况;记录自定义日志以跟踪业务逻辑;定期审查和清理日志避免占用过多磁盘空间。综上,有效日志记录能显著提升 Hibernate 应用的性能和稳定性。
51 0
|
3月前
|
数据库 Java 监控
Struts 2 日志管理化身神秘魔法师,洞察应用运行乾坤,演绎奇幻篇章!
【8月更文挑战第31天】在软件开发中,了解应用运行状况至关重要。日志管理作为 Struts 2 应用的关键组件,记录着每个动作和决策,如同监控摄像头,帮助我们迅速定位问题、分析性能和使用情况,为优化提供依据。Struts 2 支持多种日志框架(如 Log4j、Logback),便于配置日志级别、格式和输出位置。通过在 Action 类中添加日志记录,我们能在开发过程中获取详细信息,及时发现并解决问题。合理配置日志不仅有助于调试,还能分析用户行为,提升应用性能和稳定性。
58 0
下一篇
无影云桌面