ChatGPT4 相比 ChatGPT3.5 在逻辑推理能力上有了很大的进步,他的代码生成能力更是让我非常震撼,因此我尝试在工作中某些不涉密的基础工作应用 ChatGPT4 来提升研发效率,简单尝试之后发现确实有不少场景是有效的。本文将向大家展示如何充分利用 ChatGPT-4 这一强大的 AI 工具,并结合结对编程方法,从而在研发过程中实现显著的效率提升。
重要提示:大家在作相应尝试的时候,一定要注意信息安全。
场景一:正则表达式编写
我们团队负责 PCG 可观测平台-伽利略的研发,PromQL 是可观测领域常用的查询语言,Protobuf 这种协议有自带基于正则表达式的参数检查器,因此我们需要写一个正则表达式,来检测 PromQL 的合法性,以便于尽早的发现不合法的 PromQL,抛出错误,降低底层引擎的压力。
这个需求,按经验至少得花超过一小时编码及单元测试,得翻阅不少 PromQL 手册,正则表达式的手册。我们试着把这个任务交给 ChatGPT4。
ChatGPT4 写了一个很复杂的表达式,并且告诉我们这个需求是不合理的,完美的语法检测得要实现一个语法分析器,而不是正则表达式。
这里我完善我的需求,我们在接入层的正则应该在乎精确率,忽略召回率,旨在尽早发现一部份错误,而不是全部错误。
这一次,看上去还不错,但是我懒,不想仔细看,我又不放心他写。所以我要求他自己写个单测,进行充分的自测。
ChatGPT4 写的单测非常的 Readability,他还知道表驱动的方式写测试数据。
咱们把代码 run 起来:
有一个测试用例没过,把这种情况告诉 ChatGPT4,让他自己解决吧。
ChatGPT4 说要解决这个问题,必须引入更复杂的表达式。这不是我们想要的结果,因此我们还是选择了更简单的正则表达式交付需求,做一些简单的检查,更复杂的检查就交给 promql 语法解析器去做。
所以我花 5 分钟,发现了需求的不合理,选择了最符合业务需求的方案,并且还写完了我们想要的正则表达式。并且代码非常 Readability,同时有单测。
场景二:重构代码
我们写代码的过程中,往往会因为疏忽,而产出各种 bug 和坏味道。我们来试试 ChatGPT4 能帮我们做什么。
下面随机找了一段我们代码仓库里面的不涉密基础代码,发给 ChatGPT4。
package strings import ( "fmt" "regexp" "strconv" ) var reOfByte = regexp.MustCompile(`(\d+)([GgMmKkBb]?)`) // ParseByteNumber 解析带有容量的字符串 func ParseByteNumber(s string) int64 { arr := reOfByte.FindAllStringSubmatch(s, -1) if len(arr) < 1 || len(arr[0]) < 3 { return -1 } n, err := strconv.Atoi(arr[0][1]) if err != nil { return -2 } if n <= 0 { return -3 } switch arr[0][2] { case "G", "g": return int64(n) * (1024 * 1024 * 1024) case "M", "m": return int64(n) * (1024 * 1024) case "K", "k": return int64(n) * (1024) case "B", "b", "": return int64(n) default: return -4 } }
先让 ChatGPT 看一眼代码。
ChatGPT4 表示他看懂了,接下来给 ChatGPT4 提一下重构的需求,看看 ChatGPT4 的表现。
不得不说,ChatGPT4 这些优化,使得代码 Readability 了很多,特别是错误码返回这里,原来的代码真是天坑。但同时我们也发现这个函数实现是不太符合需求的,他只匹配了 substring。例如 XXXX100KBXXX 这类参数也会被错误匹配。我们把这些情况告诉 GPT4,看看他的表现。(毕竟是结对编程,我也得动点脑子做点贡献!!!)
这里我们看到,GPT4 不仅仅完成了需求,他还做到了兼容浮点数输入,使得返回的精度更高了。例如 1.5MB 实际是 1536B,按我们最初的实现确实会丢失精度,变成 1024B。这还帮我们发现了个 BUG,捂脸。
最后照例,让他补充一下单测。
通过 15 分钟的简单交流,我和 ChatGPT 一起完成了这次代码重构!!!
场景三:实现业务逻辑
虽然要求 chatGPT4 一次性给我们交付整个完整需求有点过分,但我们依然可以把需求拆分成小的逻辑单元给 chatGPT 实现,并要求他编写单测。
这次,我们找了我们项目里面最新的需求来做个实验,让 ChatGPT 帮我们完成需求。
需求是要做一个事件的聚合能力,伽利略会收集各个平台的事件数据,聚合之后以更加可视化的方式给用户展示。来吧,GPT4!
在我不断的追加我的需求细节之后,chatGPT4 交付了一个还算可以的东西,当然这里我们也发现这段代码有个 BUG,当然,我是不会自己动手修复的,让 GPT4 自己来吧。
整体代码虽然不算特别清晰,但做一些修改还是可以用的,当然我觉得这跟我本身没把需求描述的太清楚也有关系。