假期充电,用阿里云 Serverless K8s + AIGC 搭建私人代码助理

简介: 假期充电,用阿里云 Serverless K8s + AIGC 搭建私人代码助理

作者:子白、冬岛


AI 技术正在引领科技创新浪潮,随着 ChatGPT 和 Midjourney 的走红,AIGC 技术正在世界范围内掀起一股 AI 技术浪潮。开源领域也涌现了许多类似模型,如 FastGPT、Moss、Stable Diffusion 等。这些模型展现出的惊人效果吸引企业和开发者们投身其中,但是复杂繁琐的部署方式成为了拦路虎。阿里云 ASK 提供 Serverless 化的容器服务,用户无需关心资源及环境配置,可以帮助开发者们零门槛快速部署 AI 模型。本文以开源的 FastChat 为例,详细展示如何在 ASK 中快速搭建一个私人代码助理。目前,ASK 已加入阿里云免费试用计划,为开发者、企业提供一定额度的试用资源。如对 ASK 感兴趣,欢迎大家通过点击文末的“此处” 访问并领取。



效果预览


Cursor + GPT-4 的代码生成是不是觉得很智能,我们通过 FastChat + VSCode 插件也能做到一样的效果!


  • 快速生成一个 Golang  Hello World

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574183392-11e16131-3dae-4969-a0d1-79a0a9eefb01.gif


  • 快速生成一个 Kubernetes  Deployment

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574192825-7a1d3c76-025d-45db-bea1-4ca5dd885520.gif


背景介绍


ASK(Alibaba Serverless Kubernetes)是阿里云容器服务团队提供的一款面向 Serverless 场景的容器产品。用户可以使用 Kubernetes API 直接创建 Workload,免去节点运维烦恼。ASK 作为容器 Serverless 平台,具有免运维、弹性扩容、兼容 K8s 社区、强隔离四大特性。



大规模 AI 应用训练和部署主要面临以下挑战。


  • GPU 资源受限且训练成本较高

大规模 AI 应用在训练及推理时都需要使用 GPU,但是很多开发者缺少 GPU 资源。单独购买 GPU 卡,或者购买 ECS 实例都需要较高成本。

  • 资源异构

并行训练时需要大量的 GPU 资源,这些 GPU 往往是不同系列的。不同 GPU 支持的 CUDA 版本不同,且跟内核版本、nvidia-container-cli 版本相互绑定,开发者需要关注底层资源,为 AI 应用开发增加了许多难度。

  • 镜像加载慢

AI 类应用镜像经常有几十 GB,下载往往需要几十分钟甚至数小时。


针对上述问题,ASK 提供了完美的解决方案。在ASK 中可以通过 Kubernetes Workload 十分方便的使用 GPU 资源,无需其前置准备使用,用完即可立即释放,使用成本低。ASK 屏蔽了底层资源,用户无需关心 GPU、CUDA 版本等等的依赖问题,只需关心 AI 应用的自身逻辑即可。同时,ASK 默认就提供了镜像缓存能力,当 Pod 第 2 次创建时可以秒级启动。


部署流程


1. 前提条件


  • 已创建 ASK 集群。具体操作,请参见创建 ASK 集群[1]
  • 下载 llama-7b 模型并上传到 OSS 。具体操作,请参见本文附录部分。


2. 使用 Kubectl 创建


替换 yaml 文件中变量

${your-ak} 您的 AK

${your-sk} 您的 SK

${oss-endpoint-url} OSS 的 enpoint

${llama-oss-path} 替换为存放 llama-7b 模型的地址(路径末尾不需要/),如 oss://xxxx/llama-7b-hf


apiVersion: v1
kind: Secret
metadata:
  name: oss-secret
type: Opaque
stringData:
  .ossutilconfig: |
    [Credentials]
    language=ch
    accessKeyID=${your-ak}
    accessKeySecret=${your-sk}
    endpoint=${oss-endpoint-url}
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: fastchat
  name: fastchat
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      app: fastchat
  strategy:
    rollingUpdate:
      maxSurge: 100%
      maxUnavailable: 100%
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: fastchat
        alibabacloud.com/eci: "true" 
      annotations:
        k8s.aliyun.com/eci-use-specs: ecs.gn6e-c12g1.3xlarge
    spec:
      volumes:
      - name: data
        emptyDir: {}
      - name: oss-volume
        secret:
          secretName: oss-secret
      dnsPolicy: Default
      initContainers:
      - name: llama-7b
        image: yunqi-registry.cn-shanghai.cr.aliyuncs.com/lab/ossutil:v1
        volumeMounts:
          - name: data
            mountPath: /data
          - name: oss-volume
            mountPath: /root/
            readOnly: true
        command: 
        - sh
        - -c
        - ossutil cp -r ${llama-oss-path} /data/
        resources:
          limits:
            ephemeral-storage: 50Gi
      containers:
      - command:
        - sh
        - -c 
        - "/root/webui.sh"
        image: yunqi-registry.cn-shanghai.cr.aliyuncs.com/lab/fastchat:v1.0.0
        imagePullPolicy: IfNotPresent
        name: fastchat
        ports:
        - containerPort: 7860
          protocol: TCP
        - containerPort: 8000
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          initialDelaySeconds: 5
          periodSeconds: 10
          successThreshold: 1
          tcpSocket:
            port: 7860
          timeoutSeconds: 1
        resources:
          requests:
            cpu: "4"
            memory: 8Gi
          limits:
            nvidia.com/gpu: 1
            ephemeral-storage: 100Gi
        volumeMounts:
        - mountPath: /data
          name: data
---
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: internet
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-instance-charge-type: PayByCLCU
  name: fastchat
  namespace: default
spec:
  externalTrafficPolicy: Local
  ports:
  - port: 7860
    protocol: TCP
    targetPort: 7860
    name: web
  - port: 8000
    protocol: TCP
    targetPort: 8000
    name: api
  selector:
    app: fastchat
  type: LoadBalancer


3. 等待 FastChat Ready


等待 pod ready 后,在浏览器中访问 http://${externa-ip}:7860

📍启动后需要下载 vicuna-7b 模型,模型大小约 13GB

下载模型时间大概耗时约 20 分钟左右,如果提前做好磁盘快照,通过磁盘快照创建磁盘并挂载到 pod,就是秒级生效


kubectl get po |grep fastchat
# NAME                        READY   STATUS    RESTARTS   AGE
# fastchat-69ff78cf46-tpbvp   1/1     Running   0          20m
kubectl get svc fastchat
# NAME       TYPE           CLUSTER-IP        EXTERNAL-IP    PORT(S)          AGE
# fastchat   LoadBalancer   192.168.230.108   xxx.xx.x.xxx   7860:31444/TCP   22m


效果展示


Case 1:通过控制台使用 FastChat


在浏览器中访问 http://${externa-ip}:7860,可以直接测试聊天功能。比如使用自然语言让 FastChat 写一段代码。


输入:基于 Nginx 镜像编写 Kubernetes Deployment Yaml 文件


FastChat 输出如下图所示。



Case 2:通过 API 使用 FastChat


FastChat API 监听在 8000 端口,如下所示,通过 curl 发起一个 API 调用,然后返回结果。


  • curl 命令


curl http://xxx:xxx:xxx:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "vicuna-7b-v1.1",
    "messages": [{"role": "user", "content": "golang 生成一个 hello world"}]
  }'


  • 输出结果


{"id":"3xqtJcXSLnBomSWocuLW2b","object":"chat.completion","created":1682574393,"choices":[{"index":0,"message":{"role":"assistant","content":"下面是使用 Go 语言生成 \"Hello, World!\" 的代码:\n```go\npackage main\n\nimport \"fmt\"\n\nfunc main() {\n    fmt.Println(\"Hello, World!\")\n}\n```\n运行该代码后,会输出 \"Hello, World!\"。"},"finish_reason":"stop"}],"usage":null}


Case 3: VSCode 插件


既然有了 API 接口,在 IDE 中怎么快速集成这个能力呢。你是不是想到了 Copilot、Cursor、Tabnine ,那咱们就通过 VSCode 插件集成一下 FastChat 看看吧。VSCode 插件几个核心文件:src/extension.ts、package.json 和 tsconfig.json


这三个文件的内容分别如下:


  • src/extension.ts


import * as vscode from 'vscode';
import axios from 'axios';
import { ExtensionContext, commands, window } from "vscode";
const editor = window.activeTextEditor
export function activate(context: vscode.ExtensionContext) {
    let fastchat = async () => {
        vscode.window.showInputBox({ prompt: '请输入代码提示语' }).then((inputValue) => {
            if (!inputValue) {
                return;
            }
            vscode.window.withProgress({
                location: vscode.ProgressLocation.Notification,
                title: '正在请求...',
                cancellable: false
            }, (progress, token) => {
                return axios.post('http://example.com:8000/v1/chat/completions', {
                    model: 'vicuna-7b-v1.1',
                    messages: [{ role: 'user', content: inputValue }]
                }, {
                    headers: {
                        'Content-Type': 'application/json'
                    }
                }).then((response) => {
                    // const content = JSON.stringify(response.data);
                    const content = response.data.choices[0].message.content;
                    console.log(response.data)
                    const regex = /```.*\n([\s\S]*?)```/
                    const matches = content.match(regex)
                    if (matches && matches.length > 1) {
                        editor?.edit(editBuilder => {
                            let position = editor.selection.active;
                            position && editBuilder.insert(position, matches[1].trim())
                        })
                    }
                }).catch((error) => {
                    console.log(error);
                });
            });
        });
    }
    let command = commands.registerCommand(
        "fastchat",
        fastchat
    )
    context.subscriptions.push(command)
}


  • package.json


{
    "name": "fastchat",
    "version": "1.0.0",
    "publisher": "yourname",
    "engines": {
        "vscode": "^1.0.0"
    },
    "categories": [
        "Other"
    ],
    "activationEvents": [
        "onCommand:fastchat"
    ],
    "main": "./dist/extension.js",
    "contributes": {
        "commands": [
            {
                "command": "fastchat",
                "title": "fastchat code generator"
            }
        ]
    },
    "devDependencies": {
        "@types/node": "^18.16.1",
        "@types/vscode": "^1.77.0",
        "axios": "^1.3.6",
        "typescript": "^5.0.4"
    }
}


  • tsconfig.json


{
    "compilerOptions": {
      "target": "ES2018",
      "module": "commonjs",
      "outDir": "./dist",
      "strict": true,
      "esModuleInterop": true,
      "resolveJsonModule": true,
      "declaration": true
    },
    "include": ["src/**/*"],
    "exclude": ["node_modules", "**/*.test.ts"]
  }


好,插件开发完咱们就看一下效果。


  • 快速生成一个 Golang  Hello World

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574183392-11e16131-3dae-4969-a0d1-79a0a9eefb01.gif


  • 快速生成一个 Kubernetes  Deployment

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574192825-7a1d3c76-025d-45db-bea1-4ca5dd885520.gif


总结


ASK 作为容器 Serverless 平台,具有免运维、弹性扩缩容、屏蔽异构资源、镜像加速等能力,非常适合 AI 大模型部署场景,欢迎试用。

附录:

1. 下载 llama-7b 模型

模型地址:

https://huggingface.co/decapoda-research/llama-7b-hf/tree/main


# 如果使用的是阿里云 ECS,需要运行如下命令安装 git-lfs
# yum install git-lfs
git clone https://huggingface.co/decapoda-research/llama-7b-hf
git lfs install
git lfs pull


2. 上传到 OSS

可参考文档:

https://help.aliyun.com/document_detail/195960.html

参考文档:

[1] 创建 ASK 集群

https://help.aliyun.com/document_detail/86377.htm?spm=a2c4g.186945.0.0.61eb3e0694K2ej#task-e3c-311-ydb

[2] ASK 概述

https://help.aliyun.com/document_detail/86366.html?spm=a2c4g.750001.0.i1


点击此处,领取 ASK 免费试用限额资源

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3月前
|
机器学习/深度学习 人工智能 Serverless
吉利汽车携手阿里云函数计算,打造新一代 AI 座舱推理引擎
当前吉利汽车研究院人工智能团队承担了吉利汽车座舱 AI 智能化的方案建设,在和阿里云的合作中,基于星睿智算中心 2.0 的 23.5EFLOPS 强大算力,构建 AI 混合云架构,面向百万级用户的实时推理计算引入阿里云函数计算的 Serverless GPU 算力集群,共同为智能座舱的交互和娱乐功能提供大模型推理业务服务,涵盖的场景如针对模糊指令的复杂意图解析、文生图、情感 TTS 等。
|
4月前
|
存储 机器学习/深度学习 人工智能
阿里云环境下 Runway 深度部署:从技术原理到 AIGC 视频生成落地
Runway作为AI视频生成标杆,融合扩散模型与多模态技术,依托潜空间优化与时空注意力机制,实现高效高质视频生成。结合阿里云算力与API生态,支持版权合规、运镜控制与多模态联动,广泛应用于影视、广告与游戏领域,推动内容创作智能化升级。
852 0
|
5月前
|
运维 NoSQL Serverless
|
4月前
|
消息中间件 运维 监控
爆款游戏背后:尚娱如何借助阿里云 Kafka Serverless 轻松驾驭“潮汐流量”?
阿里云 Kafka 不仅为尚娱提供了高可靠、低延迟的消息通道,更通过 Serverless 弹性架构实现了资源利用率和成本效益的双重优化,助力尚娱在快速迭代的游戏市场中实现敏捷运营、稳定交付与可持续增长。
264 50
|
4月前
|
消息中间件 存储 运维
嘉银科技基于阿里云 Kafka Serverless 提升业务弹性能力,节省成本超过 20%
云消息队列 Kafka 版 Serverless 系列凭借其秒级弹性扩展、按需付费、轻运维的优势,助力嘉银科技业务系统实现灵活扩缩容,在业务效率和成本优化上持续取得突破,保证服务的敏捷性和稳定性,并节省超过 20% 的成本。
286 35
|
4月前
|
人工智能 机器人 Serverless
安诺机器人 X 阿里云函数计算 AI 咖啡印花解决方案
当云计算遇见具身智能,AI咖啡开启零售新体验。用户通过手机生成个性化图像,云端AI快速渲染,机器人精准复刻于咖啡奶泡之上,90秒内完成一杯可饮用的艺术品。该方案融合阿里云FunctionAI生图能力与安诺机器人高精度执行系统,实现AIGC创意到实体呈现的闭环,为线下零售提供低成本、高互动、易部署的智能化升级路径,已在商场、机场、展馆等场景落地应用。
安诺机器人 X 阿里云函数计算 AI 咖啡印花解决方案
|
人工智能 运维 安全
阿里云函数计算 AgentRun 全新发布,构筑智能体时代的基础设施
阿里云推出以函数计算为核心的AgentRun平台,通过创新体系解决开发、部署、运维难题,提供全面支持,已在多个真实业务场景验证,是AI原生时代重要基础设施。
|
4月前
|
人工智能 运维 安全
阿里云函数计算 AgentRun 全新发布,构筑智能体时代的基础设施
云原生应用平台 Serverless 计算负责人杨皓然在云栖大会发表主题演讲“Serverless Agent 基础设施:助力大规模 Agent 部署与运维”。本议题深入介绍了阿里云以函数计算为核心打造的 Agent 基础设施——AgentRun,阐述其如何通过创新的运行时、模型服务、网关及可观测体系,为企业构筑坚实、高效、安全的 Agent 时代基石。
|
5月前
|
运维 NoSQL Serverless
《第四纪元》玩得轻松,构建也轻松 | 阿里云云原生 API 网关、函数计算助力 IGame 快速构建轻休闲游戏
在轻休闲游戏流量波动大、生命周期短的背景下,传统架构难以应对成本与扩展挑战。本文介绍了基于阿里云函数计算 FC 和 Redis 构建的新一代服务器架构,实现弹性伸缩、成本优化与高效运维,助力轻休闲游戏快速迭代与稳定运营,提升开发效率并降低运维复杂度。
《第四纪元》玩得轻松,构建也轻松 | 阿里云云原生 API 网关、函数计算助力 IGame 快速构建轻休闲游戏
|
DataWorks 数据挖掘 Serverless
阿里云EMR Serverless StarRocks 内容合集
阿里云 EMR StarRocks 提供存算分离架构,支持实时湖仓分析,适用于多种 OLAP 场景。结合 Paimon 与 Flink,助力企业高效处理海量数据,广泛应用于游戏、教育、生活服务等领域,显著提升数据分析效率与业务响应速度。
375 0

相关产品

  • 容器服务Kubernetes版
  • 函数计算
  • 推荐镜像

    更多