GPT-4 开启 “软件工程3.0” 全新时代(1)

简介: GPT-4 开启 “软件工程3.0” 全新时代

GPT-4 开启 “软件工程3.0” 全新时代

技术琐话 2023-03-25 08:33 发表于陕西

以下文章来源于软件质量报道,作者朱少民

希望这篇文章 成为 “软件工程3.0” 开创性的宣言为了定义 “软件工程3.0”,让我们先定义 “软件工程1.0”、 “软件工程2.0” 。先简单说明一下,用软件版本号的方式 “1.0、2.0、3.0” 来分别定义第一代、第二代、第三代 软件工程,符合软件工程的习惯,而且简洁明了。1. 软件工程 1.0

“软件工程1.0” 即第一代软件工程,自然是受建筑工程、水利工程等影响的传统软件工程,它的诞生可以追溯到1968年。在上个世纪五、六十年代软件出现危机,大家还记得布鲁克斯(Frederick P. Brooks)在《人月神话》一书中所描述的场景:软件开发被喻为让众多史前巨兽痛苦挣扎,却无力摆脱的焦油坑。软件危机迫使人们去寻找产生危机的内在原因,进而找出消除危机的解决方案。面对”软件危机”,人们调查研究了软件开发的实际情况,逐步认识到采用工程化的方法从事软件系统的研发和维护的必要性。为了克服这一危机,大家走到一起,共同探讨以获得问题的解决途径,于是在1968年NATO的计算机科学家在联邦德国召开国际会议,讨论软件危机问题,正式提出了“软件工程”(software engineering)这一术语,从此一门新的工程学科诞生了,软件工程才得以不断发展,逐渐成熟起来。传统软件工程主要向土木工程、工业工程学习,吸收其百年实践积累下来的实践方法和经验、沉淀下来的思想。软件工程1.0体现了下列一些特征:

  • 产品化:交付符合质量标准的组件、构件和系统
  • 过程决定结果:流程质量决定产品质量,一环扣一环,相信良好的过程产生良好的产品,关注过程胜过关注人,也非常关注过程评估和过程改进,如CMM(过程成熟度模型)是其典型代表。
  • 阶段性明确,需求评审通过了,才能开始设计;设计评审通过了,才能开始实施(编程),编程结束了再进行测试等,如瀑布模型是其典型代表
  • 责任明确:角色定义清楚,分工细致;
  • 文档化:强调规范的文档,大量的文档模板;
  • 计划性强:完整的计划,严格控制变更;
  • 建筑工程的框架结构设计,在软件工程上表现为以架构设计为中心。
  • 现代制造业流水线的启发——软件工厂思想。
  • 注重项目管理:围绕项目开展管理工作,包括风险预防、里程碑控制和关键路径法等。
  • 以顾客为中心的全面质量管理。
  • 预防为主,检验为辅,即缺陷预防思想。


2. 软件工程 2.0

在2008年,我写的《软件工程导论》中,相对传统软件工程,我定义了现代软件工程,那时,我没能预见到今天人工智能的巨大力量。15年后,我将受互联网、开源软件运动、敏捷/DevOps开发模式所影响并最终形成的、建立在SaaS(软件即服务)、Cloud之上的软件工程定义为 “软件工程2.0”。没有互联网(Internet),就没有Cloud、没有SaaS,我们对软件就不能部署在软件研发公司自己的数据中心,持续交付(CD)就没有意义,因为无法做到将包装盒形式的软件产品持续交付到客户手中,敏捷、DevOps也就难以实施,虽然可以在内部实现持续集成(CI),其价值会降低不少。开源软件运动让我们认识到 “软件过程”、“软件管理”不是非常重要,至少不是第一要素,第一要素还是人,其次是软件架构(微服务、serverless等)和代码质量,使软件容易演化(如架构可扩展性、代码的可维护性)。而且客户或用户始终希望我们能够按时交付高质量的产品,又认可软件的灵活性,希望软件能够具有随需应变的能力,及时进行必要的修改来满足业务的新需求。同时,软件又是一种知识型产品,需要创造性,并依赖每个研发人员的创造力和积极性。所有这些引导人们新的思考,引导人们不断认识软件工程,从而在2001年17位软件开发轻量型流派掌门人联合签署了敏捷宣言:

之后逐渐形成了敏捷/DevOps开发模式、精益软件开发模式等,即让软件工程进入2.0时代。软件工程2.0的特征可以简单概括为下列几点:

  • SaaS(软件即服务):软件更多是以一种服务存在;
  • 以人为本:个体与协作胜于流程和工具,充分发挥个人和团队的创造性和潜力;
  • 拥抱变化:敏捷开发或轻量级过程,加速迭代,以不变应万变。
  • 持续性阶段性不明确,持续构建、持续集成、持续测试、持续交付,以时间换空间,消除市场风险;
  • 融合:强调测试开发融合,开发与运维融合,推崇全栈工程师等。
  • 真正把用户放在第一位用户、产品经理尽可能参与团队研发过程中,注重用户体验,千人千面;
  • 强调价值交付:只做对用户有价值的事情,加速价值流的流动;
  • 知识管理,将软件工程纳入知识管理的范畴。
  • 史诗般故事、用户故事、站立会议,让软件研发工作更有趣、更健康。
  • ......


3. 软件工程 3.0

在技术突破和创新方法的推动下,软件工程的世界发展越来越快,而最近的突破就是GPT-4等人工智能(AI)语言大模型的出现。GPT-4出来了,大家都很震惊,尤其惊讶于从GPT-3到GPT-4的进化速度。GPT-4是一种基于RLHF(人类反馈强化学习) 、多模态的语言大模型,它比其前身GPT-3.5有了显著的改进,GPT-4具有强大的识图能力、文字输入限制提升至 2.5 万字、回答准确性显著提高。因此GPT-4能够执行一系列复杂的任务,如代码生成、错误检测、软件设计等。正如文章谷歌工程主管:程序员的职业生涯将在 3 年内被AIGC终结 中的观点: “ChatGPT和GitHub Copilot预示着编程终结的开始”、“这个领域将发生根本性的变化”、“当程序员开始被淘汰时,只有两个角色可以保留:产品经理和代码评审人员。”...... 这篇文章是在GPT-4发布前写的,而GPT-4要强大多,所以对软件研发的影响更为显著。考虑到它的发展速度,在不久的将来,甚至从今天开始,AI就开始逐渐接手一些软件研发的工作,我们通过将GPT-4+(指GPT-4及其未来升级的版本)融入到软件研发生命周期中,研发人员的使命发生变化,GPT-4+重新定义了开发人员构建、维护和改进软件应用程序的方式,之后的软件开发会依赖这种全新的语言交流方式(类似chatGPT那样),让这类工具理解研发人员交待的任务、自主完成软件开发,如理解需求、自动生成UI、自动生成产品代码、自动生成测试脚本等。此后,研发团队的主要任务不是写代码、执行测试,而是训练模型、参数调优、围绕业务主题提问或给提示(prompt)。因此,我们说GPT-4将开启 “软件工程3.0” 新时代,今年是软件工程3.0元年。先看看 GPT-4自己是如何说的,但经过我简单的实验,它能做的事比它自己说的要多。


相关文章
|
6天前
|
人工智能 负载均衡 搜索推荐
谷歌发布双思维AI Agent:像人类一样思考,重大技术突破!
谷歌近日推出基于“快慢思维”理论的双思维AI Agent系统,模仿人类大脑的两种思维模式:快速直观的Talker(系统1)和深思熟虑的Reasoner(系统2)。Talker负责日常对话与快速响应,Reasoner则处理复杂推理任务。该系统模块化设计,灵活高效,已在睡眠教练等场景中展现应用潜力,但仍面临工作负载平衡与推理准确性等挑战。论文详情见:https://arxiv.org/abs/2410.08328v1
32 1
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI发展与GPT简介
人工智能(AI)是指计算机系统执行通常需要人类智能的任务的能力,如视觉感知、语音识别、决策制定和语言翻译。简而言之,AI就是让计算机模仿人类的思考和行为过程。
339 0
|
3月前
|
人工智能 开发框架 算法
《C++巧筑智能框架根基:开启 AI 开发新航道》
在科技飞速发展的今天,C++作为高效强大的编程语言,在构建人工智能开发框架基础架构中扮演着重要角色。本文探讨如何利用C++的优势,从数据处理、模型构建、训练及评估等模块出发,打造稳定、高效的AI开发框架,支持计算密集型任务,促进人工智能技术的发展与应用。
|
5月前
|
人工智能 安全 测试技术
忘掉GPT-5!OpenAI推出全新AI模型系列o1,声称性能达到博士级
忘掉GPT-5!OpenAI推出全新AI模型系列o1,声称性能达到博士级
|
5月前
|
人工智能 自然语言处理 搜索推荐
AI新纪元:ChatGPT如何重塑我们的工作与生活方式?
【9月更文挑战第1天】ChatGPT作为AI领域的新星正逐步改变着我们的工作与生活方式。它以其强大的自然语言处理能力和广泛的应用潜力为我们带来了诸多便利和机遇。然而我们也应清醒地认识到其中存在的挑战和风险。在未来的发展中我们需要不断探索和完善AI技术以实现人机和谐共生的美好愿景。
|
6月前
|
人工智能 API 异构计算
震惊AI界!DeepSeek挑战GPT-4o霸主地位,发布超低价开源大模型
震惊AI界!DeepSeek挑战GPT-4o霸主地位,发布超低价开源大模型
343 2
|
6月前
|
人工智能 自然语言处理 量子技术
👑生成式大模型王者之路:掌握提示词工程,让你的创意称霸AI界👑
【8月更文挑战第1天】在AI领域,生成式大模型正引领新潮流。然而,驾驭这些模型的关键在于提示词工程。初学者的提示词往往简单直白,激发的基础内容缺乏特色;而高手能构建具启发性的提示词,引导模型挖掘创意潜力。模糊提示词让模型难以把握重点,精准提示词则如导航,明确方向与目标。例如,从“写篇未来文章”到详细指定时间、地点与技术背景,后者促使模型生成更具体深入的内容。掌握提示词工程,让你在AI创意领域独领风骚。
97 0
|
9月前
|
人工智能
Sora为什么是AI界的新里程碑?
【2月更文挑战第9天】Sora为什么是AI界的新里程碑?
1246 3
Sora为什么是AI界的新里程碑?
|
机器学习/深度学习 自然语言处理 机器人
ChatGPT发展与技术基础
ChatGPT发展与技术基础
245 1
|
人工智能 编解码 自然语言处理
ChatGPT问世不到半年,这个行业就已被AI化了
ChatGPT问世不到半年,这个行业就已被AI化了
105 0