Python高级--元类

简介: Python高级--元类

类的创建
1.通过class ...
2.通过type
type() 函数既可以返回一个对象的类型,又可以创建出新的类型
type(name, bases, dict)
name -- 类的名称。
bases -- 基类的元组。
dict -- 字典,类内定义的命名空间变量

Person = type('Person', (object,), {'name': '测试类属性'})
p1 = Person()
print(p1.name)
测试类属性

3.通过元类

class RunMetaClass(type):
    def __new__(cls, obj, base, attr):
        print("元类的new方法被调用了")

        def run(self):
            print("这是run方法")

        attr['run'] = run
        return type.__new__(cls, obj, base, attr)

class Run(object, metaclass=RunMetaClass):
    pass

r1 = Run()
print(hasattr(r1, 'run'))
元类的new方法被调用了
True

函数type实际上是一个元类,type就是Python在背后用来创建所有类的元类。
我们自己定义的类默认使用的元类就是type这个元类,元类就是创建类这种对象的东西

相关文章
|
3月前
|
开发者 Python
Python中的元类深度剖析与实战应用
Python中的元类深度剖析与实战应用
48 0
|
5月前
|
关系型数据库 MySQL Java
Python中的元类(metaclass)
Python中的元类(metaclass)
|
6月前
|
数据采集 Java C语言
Python面向对象的高级动态可解释型脚本语言简介
Python是一种面向对象的高级动态可解释型脚本语言。
53 3
|
6月前
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
6月前
|
机器学习/深度学习 数据采集 人工智能
Python 是一种广泛使用的高级编程语言
【7月更文挑战第17天】Python 是一种广泛使用的高级编程语言
64 2
|
5月前
|
设计模式 存储 数据库连接
Python设计模式:巧用元类创建单例模式!
Python设计模式:巧用元类创建单例模式!
65 0
|
6月前
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
58 1
|
6月前
|
消息中间件 网络协议 网络安全
解锁Python Socket新姿势,进阶篇带你玩转高级网络通信技巧!
【7月更文挑战第26天】掌握Python Socket后,探索网络通信高级技巧。本指南深化Socket编程理解,包括非阻塞I/O以提升并发性能(示例使用`select`),SSL/TLS加密确保数据安全,以及介绍高级网络协议库如HTTP、WebSocket和ZeroMQ,简化复杂应用开发。持续学习,成为网络通信专家!
53 0
|
6月前
|
存储 数据处理 开发者
告别繁琐查找!Python高级数据结构Trie树与Suffix Tree,让数据处理更轻松!
【7月更文挑战第19天】Python的Trie树优化字符串搜索,利用前缀减少无效操作,提升效率;Suffix Tree则高效处理后缀问题,尤其适用于文本搜索与生物信息学。虽构建复杂,但能加速后缀查询。掌握这两种数据结构,能有效应对大规模数据挑战,简化处理流程,提升开发效率。
122 0
|
6月前
|
数据采集 数据挖掘 数据处理
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
【7月更文挑战第14天】Python的Pandas和NumPy库是数据分析的核心工具。Pandas以其高效的数据处理能力,如分组操作和自定义函数应用,简化了数据清洗和转换。NumPy则以其多维数组和广播机制实现快速数值计算。两者协同工作,如在DataFrame与NumPy数组间转换进行预处理,提升了数据分析的效率和精度。掌握这两者的高级功能是提升数据科学技能的关键。**
64 0
下一篇
开通oss服务