基于模拟退火算法的车间调度优化matlab仿真,输出甘特图

简介: 基于模拟退火算法的车间调度优化matlab仿真,输出甘特图

1.算法仿真效果
matlab2022a仿真结果如下:

3bf8865c14e1a8d3ddb5af4515b2bfb5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
78aed8bd8de20a83daa94c0268e189b9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

优化目标: 最小平均流动时间
粒子数:100 循环代数:500
变异率:0.35 变异变换对数:3
模拟退火初始值:1000 模拟退火终值:0
最小平均流动时间:43 最大完工时间:61 最小间隙时间:60
最优粒子3 1 3 6 4 5 3 2 5 5 4 1 6 2 2 1 4 1 3 6 5 6 6 2 4 5 5 3 2 4 1 6 2 4 1 3

2.算法涉及理论知识概要

    模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
   模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis [1]  等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。
AI 代码解读

c4fcc75df209c29c421d680ef6247dc4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  甘特图(Gantt chart)又称为横道图、条状图(Bar chart)。其通过条状图来显示项目、进度和其他时间相关的系统进展的内在关系随着时间进展的情况。以提出者亨利·劳伦斯·甘特(Henry Laurence Gantt)先生的名字命名。
   甘特图以图示通过活动列表和时间刻度表示出特定项目的顺序与持续时间。一条线条图,横轴表示时间,纵轴表示项目,线条表示期间计划和实际完成情况。直观表明计划何时进行,进展与要求的对比。便于管理者弄清项目的剩余任务,评估工作进度。
AI 代码解读

甘特图是以作业排序为目的,将活动与时间联系起来的最早尝试的工具之一,帮助企业描述工作中心、超时工作等资源的使用。
甘特图包含以下三个含义:
1、以图形或表格的形式显示活动;
2、通用的显示进度的方法;
3、构造时含日历天和持续时间,不将周末节假算在进度内。
简单、醒目、便于编制,在管理中广泛应用。
甘特图按内容不同,分为计划图表、负荷图表、机器闲置图表、人员闲置图表和进度表五种形式。

3.MATLAB核心程序

                 2     3     5     6     1     4
                 3     4     6     1     2     5
                 2     1     3     4     5     6
                 3     2     5     6     1     4
                 2     4     6     1     5     3];%job-shop机器约束矩阵;
             
restrictmatrixT=[1     3     6    7      3     6
                 8     5     10   10     10    4
                 5     4     8     9     1     7
                 5     5     5     3     8     9
                 9     3     5     4     3     1
                 3     3     9     10    4     1];%job-shop时间约束矩阵;
             
%===============PSO算法==========================
swarminit=cell(1,swarminitNum);
swarminitLong=sum(MM(2,:));          %所有工序数即粒子长度;
for i=1:swarminitNum,
    swarminit{i}=randomparticle(MM) ;
end                                  %随机生成初始粒子群体
[popu,s] = size(swarminit); 
trace = ones(1,gen); 
trace(1) = 10000; % 初始全局最佳适应度设为足够大 
for i = 1:s,
    bestfit(i) = 10000; % 初始个体历史最佳适应度设为足够大 
end
bestpar = swarminit; % 个体历史最佳粒子初始化
for u=1:swarminitNum,
    fitlist=[0]; 
end
T=initT;
for step = 1:gen,
    step
    for q=1:swarminitNum,
            fitlist(q)=timedecode(swarminit{q},restrictmatrixM,restrictmatrixT,machineNum)  ;     
    end              % 计算当前粒子群每个粒子的适应度
    [minval,sub] = min(fitlist); % 求得这代粒子的适应度最小值及其下标 
    if(trace(step) > minval)  ,
         trace(step) = minval; 
         bestparticle = swarminit{sub}; 
    end
    if(step~= gen) ,
        trace(step + 1) = trace(step); % 全局最佳适应度及最佳粒子调整 
    end
    T=0.97*T;
    for i = 1:s,
        tt=fitlist(i)-bestfit(i);
        if(tt<0)|(min(1,exp(-tt/T))>=rand(1,1));
           bestfit(i) = fitlist(i); 
           bestpar{i} = swarminit{i}; 
       end 
   end % 个体历史最佳粒子及适应度调整 ;
   for j = 1:s,
       if rand(1,1)<w1,
          bestparticle1=bianyi(bestparticle,changeNum,swarminitLong);
       else
           bestparticle1=bestparticle;
       end               %粒子变异;
       l1=1000;
       l2=1;
       l3=1000;
       l4=1;
       while (l1-l2)>swarminitLong,
           m=fix(swarminitLong*rand(1,1));
           n=fix(swarminitLong*rand(1,1));
           l1=max(m,n)+1;
           l2=min(m,n)+1;
       end
       while (l3-l4)>swarminitLong,
           m1=fix(swarminitLong*rand(1,1));
           n1=fix(swarminitLong*rand(1,1));
           l3=max(m1,n1)+1;
           l4=min(m1,n1)+1;
       end
       swarminit{j}=cross(bestpar{j},swarminit{j},l2,l1);
       swarminit{j}=cross(bestparticle1,swarminit{j},l4,l3);%粒子交叉;
   end 
 
 
error(step)=min(fitlist);
 
end
gant(bestparticle,swarminitLong,restrictmatrixM,restrictmatrixT,b)
figure;
plot(error);
AI 代码解读
目录
打赏
0
0
0
0
242
分享
相关文章
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
18天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
|
11月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
429 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
257 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
415 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章

AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等