python迭代器

简介: python迭代器

一,介绍
迭代器即用来迭代取值的工具,而迭代是重复反馈过程的活动,其目的通常是为了逼近所需的目标或结果,每一次对过程的重复称为一次迭代,而每一次迭代得到的结果会作为下一次迭代的初始值,单纯的重复并不是迭代

下述while循环才是一个迭代过程,不仅满足重复,而且以每次重新赋值后的index值作为下一次循环中新的索引进行取值,反复迭代,最终可以取尽列表中的值

goods=['mac','lenovo','acer','dell','dony']

index=0
while index< len(goods):

print(goods[index])
index+=1

可迭代对象
通过索引的方式进行迭代取值,实现简单,但仅适用于序列类型:字符串,列表,元组。对于没有索引的字典,集合等非序列类型,必须找到一种不依赖索引来进行迭代取值的方式,这就用到了迭代器。

要想料及迭代器为何物,必须事先搞清楚一个很重要的概念:可迭代对象(Iterable)。从语法形式上讲,内置有__iter__方法的对象都是可迭代对对象,字符串,列表,元组,字典,集合,打开的文件都是可迭代对象。

a='zhaowei'
b=[1,2,3]
c=(1,2,3)
d={'a':1,'b':2}
e={'a','b','c'}
with open(a.txt,mode='wt',encoding='utf-8') as f:

...

a.__init__()
b.__init__()
c.__init__()
d.__init__()
e.__init__()
f.__init__()

迭代器对象
调用obj.iter()方法返回的结果就是一个迭代器对象(Iterator)。迭代器对象是内置有iter和next方法的对象,代开的文件本身就是一个迭代器对象,执行迭代器对象.iter()方法得到的仍然是迭代器本身,而执行迭代器.next()方法就会计算出迭代器中的下一个值。迭代器是python提供的一种统一的,不依赖索引的迭代取值方式,只要存在多个值,无论序列类型还是非序列类型都可以按照迭代器的方式取值

s={1,2,3} # 可迭代对象s
i=iter(s) # 本质就是在调用s.__iter__(),返回s的迭代器对象i,
next(i) # 本质就是在调用i.__next__()
1
next(i)
2
next(i)
3
next(i) #抛出StopIteration的异常,代表无值可取,迭代结束

二,迭代器优缺点
基于索引的迭代取值,所有迭代的状态都保存在了索引中,而基于迭代器实现迭代的方式不再需要索引,所有迭代的状态都保存咋迭代器中,然而这种处理方式优点与缺点并存。
优点:
1.为序列和非序列提供了一种统一的迭代取值方式
2.惰性计算:迭代器对象表示的是一个数据流,可以只在需要时才去调用next来计算出一个值,就迭代器本身来说,同一时刻在内存中只有一个值,因而可以存放无限大的数据流,而对于其他容器类型,如列表,需要把所有的元素都存放于内存中,受内存大小的限制,可以存放的值的个数是有限的。

缺点:

1.除非取尽,否则无法获取迭代器的长度
2.只能取下一个值,不能回到开始,更像是‘一次性的’,爹地安全产生后的唯一目标就是重复执行方法直到值取尽,否则就会停留在某个位置,等待下一次调用next;若是要再次迭代同个对象,你只能重新调用iter方法去创建一个新的迭代器对象,如果有两个或者多个循环使用同一个迭代器,必然只会有一个循环能取到值。

目录
相关文章
|
18天前
|
存储 程序员 数据处理
深入理解Python中的生成器与迭代器###
本文将探讨Python中生成器与迭代器的核心概念,通过对比分析二者的异同,结合具体代码示例,揭示它们在提高程序效率、优化内存使用方面的独特优势。生成器作为迭代器的一种特殊形式,其惰性求值的特性使其在处理大数据流时表现尤为出色。掌握生成器与迭代器的灵活运用,对于提升Python编程技能及解决复杂问题具有重要意义。 ###
|
1月前
|
存储 索引 Python
Python 迭代器是怎么实现的?
Python 迭代器是怎么实现的?
30 6
|
2月前
|
索引 Python
解密 Python 迭代器的实现原理
解密 Python 迭代器的实现原理
48 13
|
2月前
|
机器学习/深度学习 设计模式 大数据
30天拿下Python之迭代器和生成器
30天拿下Python之迭代器和生成器
20 3
|
1月前
|
存储 大数据 Python
Python 中迭代器与生成器:深度解析与实用指南
Python 中迭代器与生成器:深度解析与实用指南
17 0
|
3月前
|
数据采集 存储 大数据
Python关于迭代器的使用
在Python编程中,数据的处理和操作是核心任务之一。 想象一下,你有一个装满各种颜色球的箱子,你想逐个查看并使用这些球,但又不想一次性将它们全部取出。 这就引出了我们今天要讨论的主题——迭代。
|
3月前
|
存储 安全 数据库
Python中的可迭代性与迭代器
在Python中,可迭代性和迭代器是非常重要的概念,它们为我们提供了一种优雅且高效的方式来处理序列和集合数据。本文将深入探讨这些概念,包括可迭代协议以及与异步编程相关的可迭代性和迭代器。
|
3月前
|
存储 安全 数据库
Python中的可迭代性与迭代器
在Python中,可迭代性和迭代器是非常重要的概念,它们为我们提供了一种优雅且高效的方式来处理序列和集合数据。本文将深入探讨这些概念,包括可迭代协议以及与异步编程相关的可迭代性和迭代器。
|
4月前
|
数据采集 存储 大数据
Python中关于迭代器的使用
总之,迭代器是Python编程的基石,它们在处理数据、优化性能和构建复杂系统方面都有着不可替代的地位。随着技术的不断进步,迭代器将继续在各种编程场景中发挥重要作用。
|
4月前
|
Python
python解包迭代器或生成器
【7月更文挑战第1天】
37 3