高并发场景下JVM调优实践之路(2)

简介: 高并发场景下JVM调优实践之路

四、优化方案/验证方案


上面已分析出当前配置存在的较为明显的不足,下面优化方案主要先针对性解决这些问题,之后再结合效果决定是否继续深入优化。


当前主流/优秀的搜集器包含:


  • Parrallel Scavenge + Parrallel Old:吞吐量优先,后台任务型服务适合;
  • ParNew + CMS:经典的低停顿搜集器,绝大多数商用、延时敏感的服务在使用;
  • G1:JDK 9默认搜集器,堆内存比较大(6G-8G以上)的时候表现出比较高吞吐量和短暂的停顿时间;
  • ZGC:JDK 11中推出的一款低延迟垃圾回收器,目前处在实验阶段;



结合当前服务的实际情况(堆大小,可维护性),我们选择ParNew + CMS方案是比较合适的。


参数选择的原则如下:


1)Meta区域的大小一定要指定,且MetaspaceSize和MaxMetaspaceSize大小应设置一致,具体多大要结合线上实例的情况,通过jstat -gc可以获取该服务线上实例的情况。


# jstat -gc 31247
S0C S1C S0U S1U EC EU OC OU MC MU CCSC CCSU YGC YGCT FGC FGCT GCT
37888.0 37888.0 0.0 32438.5 972800.0 403063.5 3145728.0 2700882.3 167320.0 152285.0 18856.0 16442.4 15189 597.209 65 70.447 667.655



可以看出MU在150M左右,

因此-XX:MetaspaceSize=256M

-XX:MaxMetaspaceSize=256M是比较合理的。


2)Young区也不是越大越好


当堆大小一定时,Young区越大,Young GC的频率一定越小,但Old区域就会变小,如果太小,稍微晋升一些对象就会触发Full GC得不偿失。


如果Young区过小,Young GC就会比较频繁,这样Old区就会比较大,单次Full GC的停顿就会比较大。因此Young区的大小需要结合服务情况,分几种场景进行比较,最终获得最合适的配置。


基于以上原则,以下为4种参数组合:


1.ParNew +CMS,Young区扩大1倍

-Xms4096M -Xmx4096M -Xmn2048M
-XX:MetaspaceSize=256M
-XX:MaxMetaspaceSize=256M
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:+CMSScavengeBeforeRemark






2.ParNew +CMS,Young区扩大1倍,

去除-XX:+CMSScavengeBeforeRemark

(使用【-XX:CMSScavengeBeforeRemark】参数可以做到在重新标记前先执行一次新生代GC)。


因为老年代和年轻代之间的对象存在跨代引用,因此老年代进行GC Roots追踪时,同样也会扫描年轻代,而如果能够在重新标记前先执行一次新生代GC,那么就可以少扫描一些对象,重新标记阶段的性能也能因此提升。)




-Xms4096M -Xmx4096M -Xmn2048M
-XX:MetaspaceSize=256M
-XX:MaxMetaspaceSize=256M
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC


3.ParNew +CMS,Young区扩大0.5倍





-Xms4096M -Xmx4096M -Xmn1536M
-XX:MetaspaceSize=256M
-XX:MaxMetaspaceSize=256M
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC 
-XX:+CMSScavengeBeforeRemark


4.ParNew +CMS,Young区不变






         


下面,我们需要在压测环境,对不同负载下4种方案的实际表现进行比较,分析,验证。


4.1 压测环境验证/分析


高负载场景(1100 QPS)GC表现



可以看出,在高负载场景,4种ParNew + CMS的各项指标表现均远好于Parrallel Scavenge + Parrallel Old。其中:


  • 方案4(Young区扩大0.5倍)表现最佳,接口P95,P99延时相对当前方案降低50%,Full GC累积耗时减少88%, Young GC次数减少23%,Young GC累积耗时减少4%,Young区调大后,虽然次数减少了,但Young区大了,单次Young GC的耗时也大概率会上升,这是符合预期的。

  • Young区扩大1倍的两种方案,即方案2和方案3,表现接近,接口P95,P99延时相对当前方案降低40%,Full GC累积耗时减少81%, Young GC次数减少43%,Young GC累积耗时减少17%,略逊于Young区扩大0.5倍,总体表现不错,这两个方案进行合并,不再区分。


Young区不变的方案在新方案里,表现最差,淘汰。所以在中负载场景,我们只需要对比方案2和方案4。


中负载场景(600 QPS)GC表现



可以看出,在中负载场景,2种ParNew + CMS(方案2和方案4)的各项指标表现也均远好于Parrallel Scavenge + Parrallel Old。


  • Young区扩大1倍的方案表现最佳,接口P95,P99延时相对当前方案降低32%,Full GC累积耗时减少93%, Young GC次数减少42%,Young GC累积耗时减少44%;
  • Young区扩大0.5倍的方案稍逊一些。


综合来看,两个方案表现十分接近,原则上两种方案都可以,只是Young区扩大0.5倍的方案在业务高峰期的表现更佳,为尽量保证高峰期服务的稳定和性能,目前更倾向于选择ParNew + CMS,Young区扩大0.5倍方案。



相关文章
|
2天前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
29 10
|
2天前
|
缓存 NoSQL Java
高并发场景秒杀抢购超卖Bug实战重现
在电商平台的秒杀活动中,高并发场景下的抢购超卖Bug是一个常见且棘手的问题。一旦处理不当,不仅会引发用户投诉,还会对商家的信誉和利益造成严重损害。本文将详细介绍秒杀抢购超卖Bug的背景历史、业务场景、底层原理以及Java代码实现,旨在帮助开发者更好地理解和解决这一问题。
26 12
|
11天前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
18天前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
24 1
|
20天前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
21天前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
39 1
|
1月前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
29天前
|
监控 Java 编译器
Java虚拟机调优实战指南####
本文深入探讨了Java虚拟机(JVM)的调优策略,旨在帮助开发者和系统管理员通过具体、实用的技巧提升Java应用的性能与稳定性。不同于传统摘要的概括性描述,本文摘要将直接列出五大核心调优要点,为读者提供快速预览: 1. **初始堆内存设置**:合理配置-Xms和-Xmx参数,避免频繁的内存分配与回收。 2. **垃圾收集器选择**:根据应用特性选择合适的GC策略,如G1 GC、ZGC等。 3. **线程优化**:调整线程栈大小及并发线程数,平衡资源利用率与响应速度。 4. **JIT编译器优化**:利用-XX:CompileThreshold等参数优化即时编译性能。 5. **监控与诊断工
|
1月前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
1月前
|
缓存 监控 Java
Java 线程池在高并发场景下有哪些优势和潜在问题?
Java 线程池在高并发场景下有哪些优势和潜在问题?