3 千字浅谈:AI 之巅,ChatGPT 之背后

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: AI 发展经历多个里程碑,最早可以追溯到 1950 年代,早期人们开始探索 AI 即人工智能的概念,后来就开发了一些早期的处理语言,比如 ELIZA;

从学习到创造



AI 技术的里程碑


AI 发展经历多个里程碑,最早可以追溯到 1950 年代,早期人们开始探索 AI 即人工智能的概念,后来就开发了一些早期的处理语言,比如 ELIZA;


到了 1960 年代,发展出了【专家系统】和【归纳学习算法】;


再到 2000 年后,AI 发展出了【深度学习技术】、【自然语言处理技术】和【计算机视觉技术】这些关键技术;


再到 2022 年,ChatGPT 诞生,颠覆 AI 从阅读理解到生成创造,自此,AI 能很好地合成结果、创造结果了~


image.png


一图胜千言,按照上图时间顺序,接下来具体讲讲下各关键节点、关键技术。


起源


人工智能这个概念其实来源于:达特矛斯会议。

1956 年 8 月 ,约翰·麦卡锡等人召集同道合的人共同讨论,在会议中集思广益,持续了一个月,这催生了人工智能革命。


会议设定了 7 个议题,分别为:

自动计算机、如何对计算机进行编程以使用语言、神经网络、计算规模理论、自我改进、抽象、随机性与创造性


控制论


控制论定义为“以机器中的控制与调节原理、以及将其类比到生物体或社会组织体后的控制原理为对象的科学研究。”


意思是从这个时候开始,人们有了意识:用科学的方法去研究对机器的控制。

image.png


控制论包括控制器设计、系统建模、智能控制算法、系统识别和自适应控制等模块;

在我国,它被认为是现代资讯技术的理论基础,和系统论、信息论并称为“老三论”;

作为基础理论,控制论应用在许多领域,比如工业控制、机器人技术、交通控制和能源管理等。


NLP


NLP 这个大家应该不陌生了,最近各种 GPT 发布会中一直有听到;

NLP,即自然语言处理(Natural Language Processing)

它旨在研究如何让计算机理解、处理和生成自然语言;通过 NLP 技术,人们可以开发出各种语言应用程序,如语音识别、机器翻译、文本分类、情感分析等;


举一个 NLP 的例子:

我们把香蕉给猴子,因为(它们)饿了

我们把香蕉给猴子,因为(它们)熟透了


这两句话有着有同样的结构。但是代词“它们”却意思不同,这就考验机器的自然语言理解与处理;


中文博大精深,对于中文理解来说,更是如此:

《阿呆给长官送红包》长官:“你这是什么意思?” 阿呆:“没什么意思,意思意思。” 长官:“你这就不够意思了。” 阿呆:“小意思,小意思。” 长官:“你这人真有意思。” 阿呆:“其实也没有别的意思。” 长官:“那我就不好意思了。” 阿呆:“是我不好意思。”


ORZ,文心一言的中文处理能力任重道远~


CV


这里 CV 不是“复制粘贴”,而是 Computer Vision,计算机视觉。

NLP 是理解文字、CV 就是看图片。


CV 包含如下一些分支:画面重建,事件监测,目标跟踪,目标识别,机器学习,索引创建,图像恢复等。它在 20 世纪末被推出;


基于 CV 技术,人们可以开发出如人脸识别、物体检测、图像分割、视频跟踪等各类应用;

image.png


NASA火星探测车的双摄影机系统


深度学习


深度学习,也是 AI 中最老生常谈的概念。

官方来说:它是一种以人工神经网络为架构,对资料进行表征学习的算法;

非官方来说:它就是一种更加强大、能处理更多复杂问题的机器学习方法;

因为它 使用多层神经网络模拟人脑的运作方式,从而可以自动从数据中学习特征并进行分类、预测和决策等任务;


数据量越大、计算能力越强,深度学习就越强。

image.png


经典的卷积神经网络模型


GAN


GAN 是生成对抗网络(Generative Adversarial Networks)的缩写,它是一种使用深度学习技术生成新数据的方法。


为什么叫对抗?


因为它通过两个神经网络相互博弈的方式进行学习;

GAN 由一个生成器和一个判别器组成:生成器将随机噪声转换为新的数据样本,而判别器则尝试区分生成器生成的样本和真实的数据样本。


通过反复训练生成器和判别器,GAN可以生成高质量的样本,例如图像、音乐和文本等。

GAN 在 2014 年被提出,它是从“深度学习”到“生成数据”的关键。


image.png

由 GAN 生成的人脸


AI4S


AI4S 在 2022 年被提出,即 AI for Science:用人工智能先解决科学问题(学习科学原理),再解决产业问题。


因为目前,许多研发密集型产业(例如新能源、生物制药、原研材料和集成电路等)已经经过几十年的发展,进入了研发深水区,产业升级面临的主要瓶颈越来越集中于基础科学问题的限制。


AI4S 可以用机器学习底层的科学原理,并将其应用于实际问题中,在许多场景中展现出极强的生命力。

用 AI 来做科研,再从科研到生产~


ChatGPT


时间来到了 2022 年年底的 ChatGPT,AIGC 再次给世人以幻想。

ChatGPT 是 OpenAI 公司发布基于GPT的语言模型。该模型使用了大量的语料库进行训练,可以生成高质量的文本,例如文章、小说、新闻报道等。

为什么会是“高质量”?


GPT 模型基于 Transformer 架构,先在大规模语料上进行无监督预训练、再在小得多的有监督数据集上为具体任务进行精细调节(fine-tune)的方式。(这个,后面会再进一步讲解~)


More?


AI 发展如登山,各个队伍虽然路线不同,但是最终能顶峰相见,现在的这个顶峰就是 GPT 热潮,其代表就是 ChatGPT!


未来呢?还有更多吗?

image.png

其实,从学习到创作的过程,就像一个人,行万里路、读万卷书,见的多了,就会想着自己去总结、思考、创作、输出,这个过程同样也适用于 AI 身上。


下面聊聊 ChatGPT 的背后~


ChatGPT 技术树



这个世界上没有什么东西是凭空产生的,孙悟空都是从石头里蹦出来的,所以 ChatGPT 也一定是基于某个东西发展而来,这个东西就是:davinci


davinci


davinci 是 GPT-3 在 OpenAI 的内部代号,ChatGPT 基于 davinci 的内部多分支演进~

基于基础模型的成体系分支演进、交叉合并促成了划时代的蜕变,一图胜千言:

image.png


ChatGPT 编年史


  • 2020 年 7 月,OpenAI 发布代号为 davinci 的初代 GPT-3模型。
  • 2021 年 7 月,OpenAI发布 Codex(代号code-cushman-001) 120 亿参数的 GPT-3 变体(代号code- davinci -001)微调得到。
  • 2022 年 3 月,OpenAI 发布指令微调 (instruction tuning) 的论文,其监督微调 (supervised instruction tuning) 的部分对应了davinci-instruct-betatext-davinci-001
  • 2022 年4月,OpenAI 完成在代码、文本上数据集上双重训练后发布GPT-3.5模型(代号code- davinci -002),开启新的代际。
  • 2022 年 6 月,OpenAI发布Instruct-GPT论文,论文模型(代号text-davinci-002)是基于code-davinci-002的有监督指令微调模型。
  • 2022 年 11 月,OpenAI 发布基于text-davinci-002进行优化调教后的ChatGPT


ChatGPT 如何迭代



人工标注


为什么 ChatGPT 对话 高质量

根本原因是 它引入 RLHF 微调范式,指导模型对齐人类语境

image.png


什么是 RLHF?


RLHF(Reinforcement Learning from Human Feedback)即使用强化学习的方法,利用人类反馈信号直接优化语言模型。


简单来说,就是用人工去标注数据,对 AI 给出的问题选项进行判断回答,反馈给 AI 以让它强化学习。


用专业的人去训练 GPT 的答案,给回答打分,就是 ChatGPT 背后最关键的训练方法~

其实,我们使用 ChatGPT 时,也能通过点赞、点踩的方式进行反馈,这同样能训练模型。


image.png


自监督学习+强化学习


以上所说的“自监督学习+强化学习”的大模型微调新范式,是未来 AI 模型范式发展的前景。


AI 先自己学,尽可能的学,学完后,AI 再回答一些领域的标准问题,专业领域的数据标注人员给 AI 回答打分,或者通过选项来选择更符合人性化的预期的答案,反馈给 AI,AI 接着专业人员的反馈继续学习、优化,再循环这个过程。


这就和我们人类的学习方法是一致的,自学+老师指导,才能进步,不然只能是闭门造车、固步自封。


image.png


图片来源于内部资料


ChatGPT 应用



现在,ChatGPT 能火爆很重要的原因在于它在各行各业都能被应用,其中最大的颠覆是在 2 个方面:搜索引擎和内容创作。

image.png


ChatGPT 使用深度学习技术生成人类类似的对话,与搜索引擎相比,它能更加智能地理解用户的意图,并且可以通过对话来提供更加个性化的服务。


ChatGPT 能生成文本内容辅助人工写作,甚至取代人工写作;

ChatGPT 还能辅助编程,可以在本瓜之前的文章找到示例:juejin.cn/post/719743…

也有一些企业已经把 ChatGPT 接入到自己的应用中充当智能客服了,对比传统机器人客服,ChatGPT 能带来更好的对话体验。

。。。


ChatGPT 能成功是 AI 这座冰山露出水面的一角,其背后是“专业标注员”、“大量的训练”、“正反馈”、“多层神经网络、”“超级计算机”、“算力”等等这些 AI 模块在加持;


最后我们用 Susan Guthrie 的话做结:

“现在让世界惊叹的模型是构建于我们几年前开始建造的超级计算机上的。”。

在未来,“新模型将构建于我们现在正在训练的新超级计算机上,这台计算机要大得多,而且会更加复杂。”


改变未来就在现在

OK,以上便是本次分享,希望各位工友喜欢~ 欢迎点赞、收藏、评论 🤟

我是安东尼 🤠 100 万人气前端技术博主 💥 INFP 写作人格坚持 1000 日更文 ✍

关注我,安东尼陪你一起度过漫长编程岁月 🌏


本文参考:


相关文章
|
1天前
|
机器学习/深度学习 人工智能 搜索推荐
哈佛推出全新类ChatGPT癌症诊断AI,登上Nature!准确率高达96%
哈佛大学研究团队开发的新型AI模型CHIEF,在《自然》期刊发表,癌症诊断准确率达96%。CHIEF基于深度学习,能自动识别、分类癌症并预测生存期,具高准确性、多任务能力和泛化性。它结合病理图像与基因组学等数据,显著提升诊断效率和个性化治疗水平,有望改善医疗资源不平等。但数据隐私和临床效果验证仍是挑战。论文见:https://www.nature.com/articles/s41586-024-07894-z
122 101
|
13天前
|
人工智能 搜索推荐 iOS开发
OpenAI推出适用于iPhone的ChatGPT,与Apple实现具有里程碑意义的AI整合
OpenAI推出适用于iPhone的ChatGPT,与Apple实现具有里程碑意义的AI整合
|
2月前
|
人工智能 自然语言处理 算法
【通义】AI视界|OpenAI最新发布!ChatGPT搜索功能强势来了,挑战谷歌?
本文由【通义】自动生成,精选24小时内的重要资讯:OpenAI推出ChatGPT搜索功能挑战谷歌,微软披露130亿美元投资OpenAI,Reddit首次盈利股价暴涨20%,软银CEO孙正义看好英伟达及“超级AI”前景,谷歌云与沙特PIF共建全球AI中心。更多内容请访问通通知道。
|
3月前
|
人工智能 自然语言处理 数据挖掘
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
68 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
还不懂如何与AI高效交流?保姆级且全面的chatGPT提示词工程教程来啦!(一)基础篇
这篇文章是一篇保姆级的教程,旨在全面介绍如何与AI进行高效交流,包括ChatGPT的前世今生、应用场景以及提问的基础技巧。
还不懂如何与AI高效交流?保姆级且全面的chatGPT提示词工程教程来啦!(一)基础篇
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】ChatGPT模型原理介绍(下)
【AI大模型】ChatGPT模型原理介绍(下)
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】ChatGPT模型原理介绍(上)
【AI大模型】ChatGPT模型原理介绍(上)
|
5月前
|
人工智能 自然语言处理 搜索推荐
chatgpt这么火,现在AI搜索引擎有哪些呢?
国外AI搜索引擎包括ChatGPT,擅长自然语言处理与内容生成;Google Bard,提供智能个性化搜索体验;Microsoft Bing集成GPT模型增强智能检索;Perplexity AI以简洁答案及文献引用著称;Neeva强调隐私保护与无广告服务。国内方面,天工AI支持多种功能如知识问答与代码编程;腾讯元宝基于混元模型助力内容创造与学习;360AI搜索以精准全面的信息搜索见长;秘塔AI专注提升写作质量和效率;开搜AI搜索提供个性化智能搜索服务。以上引擎均利用先进AI技术提升用户体验。更多详情参阅[AI搜索合集](zhangfeidezhu.com/?page_id=651)。
134 8
chatgpt这么火,现在AI搜索引擎有哪些呢?
|
4月前
|
人工智能 自然语言处理 搜索推荐
AI新纪元:ChatGPT如何重塑我们的工作与生活方式?
【9月更文挑战第1天】ChatGPT作为AI领域的新星正逐步改变着我们的工作与生活方式。它以其强大的自然语言处理能力和广泛的应用潜力为我们带来了诸多便利和机遇。然而我们也应清醒地认识到其中存在的挑战和风险。在未来的发展中我们需要不断探索和完善AI技术以实现人机和谐共生的美好愿景。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
HuggingGPT解析:使用 ChatGPT及HuggingFace上的族系解决AI问题
HuggingGPT是一个框架,它使用大型语言模型(如ChatGPT)作为控制器来管理和协调Hugging Face上的AI模型,以语言作为通用接口解决多模态和领域的复杂AI任务。
88 0
HuggingGPT解析:使用 ChatGPT及HuggingFace上的族系解决AI问题
下一篇
开通oss服务