【C++】类和对象(收尾)

简介: 【C++】类和对象(收尾)

成员变量初始化问题

  在创建对象时,编译器通过调用构造函数,给了对象中各个成员变量一个合适的初始值。但是这并不能够称为对对象中成员变量的初始化,构造函数体中的语句只能将其称为赋初值,而不能称为初始化。因为初始化只能初始化一次,而构造函数体内可以多次赋值。

初始化列表

  以一个冒号开始,接着是一个以逗号分割的数据成员列表,每个成员变量后跟一个放在括号中的初始值或表达式。

class Date
{
public:
  Date(int year, int month, int day)
    : _year(year)
    , _month(month)
    , _day(day)
  {}
private:
  int _year;
  int _month;
  int _day;
};

每个成员变量在初始化列表中只能出现一次,因为初始化只能初始化一次。

  如果存在引用成员变量、const成员变量或自定义类型成员(且该类没有默认构造函数时)就必须要在初始化列表位置进行初始化。

class A
{
public:
  A(int a)
    :_a(a)
  {}
private:
  int _a;
};
class B
{
public:
  B(int a, int ref)
    : _aobj(a)
    , _ref(ref)
    , _n(10)
  {}
private:
  A _aobj;    // 没有默认构造函数
  int& _ref;    // 引用
  const int _n; // const 
};

 尽量使用初始化列表初始化,因为不管是否在初始化列表写,每个变量都会在初始化列表定义初始化。

class Time
{
public:
  Time(int hour = 0)
    :_hour(hour)
  {
    cout << "Time()" << endl;
  }
private:
  int _hour;
};
class Date
{
public:
  Date(int day)
  {}
private:
  int _day;
  Time _t;
};
int main()
{
  Date d(1);
  return 0;
}

 成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后次序无关。

class A
{
public:
  A(int a)
    :_a1(a)
    ,_a2(_a1)
  {}
  void Print()
  {
    cout << _a1 << " " << _a2 << endl;
  }
private:
  int _a2;
  int _a1;
};
int main()
{
  A aa(1);
  aa.Print();
  return 0;
}


1f4af688f98340cf9e0b73c21e4420da.png

explicit关键字

  构造函数不仅可以构造与初始化对象,对于单个参数或者除第一个参数无默认值其余均有默认值的构造函数,还具有类型转换的作用。使用explicit修饰构造函数,将会禁止构造函数的隐式转换


class Date
{
public:
  // 单参构造函数,没有使用explicit修饰,具有类型转换作用
  // explicit修饰构造函数,禁止类型转换 -- explicit去掉之后,代码可以通过编译
  //explicit Date(int year)
  Date(int year)
    :_year(year)
  {}
  // 虽然有多个参数,但是创建对象时,后两个参数可以不传参,没有使用explicit修饰,具有类型转换作用
  // explicit修饰构造函数,禁止类型转换
  /*explicit Date(int year, int month = 1, int day = 1)
  Date(int year, int month = 1, int day = 1)
    :_year(year)
    ,_month(month)
    ,_day(day)
  {}*/
  Date& operator=(const Date& d)
  {
    if (this != &d)
    {
      _year = d._year;
      _month = d._month;
      _day = d._day;
    }
    return *this;
  }
private:
  int _year;
  int _month;
  int _day;
};
int main()
{
  Date d1(2000);
  d1 = 2023;
  return 0;
}


61d9675413624bc2877a9dcd538693e4.png

ad66fa2dd6b444b5a168fc626661e041.png

static成员

  声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量用static修饰的成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化。

class A
{
public:
  A()
  {
    ++_scount;
  }
  A(const A& t)
  {
    ++_scount;
  }
  ~A()
  {
    --_scount;
  }
  static int GetACount()
  {
    return _scount;
  }
private:
  static int _scount;
};
int A::_scount = 0;
void TestA()
{
  cout << A::GetACount() << endl;
  A a1, a2;
  A a3(a1);
  cout << A::GetACount() << endl;
}
int main()
{
  TestA();
  return 0;
}

83a6f1116b0f47b6b8dafbdb888c53a5.png

特性:

静态成员被所有类对象共享,不属于某一个具体的对象,存放在静态区中;

 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明;

 类静态成员可用 类名::静态成员 或者 对象.静态成员 来访问;

 静态成员函数没有隐藏的this指针,不能访问任何非静态成员;

 静态成员也是类的成员,受public、protected、private访问限定符的限制。

友元

  友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以友元不能过多的使用。

友元函数

友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但是需要在类的内部声明,声明时需要加friend关键字。

class Date
{
  friend ostream& operator<<(ostream& _cout, const Date& d);
  friend istream& operator>>(istream& _cin, Date& d);
public:
  Date(int year = 1900, int month = 1, int day = 1)
    : _year(year)
    , _month(month)
    , _day(day)
  {}
private:
  int _year;
  int _month;
  int _day;
};
ostream& operator<<(ostream& _cout, const Date& d)
{
  _cout << d._year << "-" << d._month << "-" << d._day;
  return _cout;
}
istream& operator>>(istream& _cin, Date& d)
{
  _cin >> d._year;
  _cin >> d._month;
  _cin >> d._day;
  return _cin;
}
int main()
{
  Date d;
  cin >> d;
  cout << d << endl;
  return 0;
}

友元函数可访问类的私有和保护成员,但不是类的成员函数;

  友元函数不能用const修饰;

  友元函数可以在类定义的任何地方声明,不受类的访问限定符的限制;

  一个函数可以是多个类的友元函数;

  友元函数的调用与普通的调用原理相同。

友元类

  友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。

  友元关系是单向的,不具有交换性;

  友元关系不能传递;

  友元关系不能继承。

class Time
{
  friend class Date;
public:
  Time(int hour = 0, int minute = 0, int second = 0)
    : _hour(hour)
    , _minute(minute)
    , _second(second)
  {}
private:
  int _hour;
  int _minute;
  int _second;
};
class Date
{
public:
  Date(int year = 1900, int month = 1, int day = 1)
    : _year(year)
    , _month(month)
    , _day(day)
  {}
  void SetTimeOfDate(int hour, int minute, int second)
  {
    // 直接访问时间类私有的成员变量
    _t._hour = hour;
    _t._minute = minute;
    _t._second = second;
  }
private:
  int _year;
  int _month;
  int _day;
  Time _t;
};

内部类

  如果一个类定义在另一个类的内部,这个内部的类就叫做内部类。内部类是一个独立的类,它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何访问权限。

  内部类就是外部类的友元类,但是外部类不是内部类的友元。

特性

  内部类可以定义在外部类的任何访问限定符内(public、protected、private);

  内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名;

  sizeof(外部类) = 外部类,和内部类没有任何关系。

class A
{
private:
  static int k;
  int h;
public:
  class B
  {
  public:
    void foo(const A& a)
    {
      cout << k << endl;
      cout << a.h << endl;
    }
  };
};
class C
{
private:
  static int c;
  int h;
};
int A::k = 1;
int main()
{
  A a;
  A::B b;
  b.foo(A());
  C c;
  cout << sizeof(a) << endl;
  cout << sizeof(b) << endl;
  cout << sizeof(c) << endl;
  return 0;
}

匿名对象

  匿名对象的特点是没有名字,它的声明周期只在定义它那一行,是一次性的。

class A
{
public:
  A(int a = 0)
    :_a(a)
  {
    cout << "A(int a)" << endl;
  }
  ~A()
  {
    cout << "~A()" << endl;
  }
private:
  int _a;
};
class Solution {
public:
  int Sum_Solution(int n) 
  {
    return n;
  }
};
int main()
{
  A aa1;
  //A aa1();// 不能这么定义对象,因为编译器无法识别是一个函数声明,还是对象定义
  A();
  A aa2(2);
  Solution().Sum_Solution(10);
  return 0;
}
目录
相关文章
|
3天前
|
设计模式 安全 编译器
【C++11】特殊类设计
【C++11】特殊类设计
22 10
|
9天前
|
C++
C++友元函数和友元类的使用
C++中的友元(friend)是一种机制,允许类或函数访问其他类的私有成员,以实现数据共享或特殊功能。友元分为两类:类友元和函数友元。类友元允许一个类访问另一个类的私有数据,而函数友元是非成员函数,可以直接访问类的私有成员。虽然提供了便利,但友元破坏了封装性,应谨慎使用。
40 9
|
4天前
|
存储 编译器 C语言
【C++基础 】类和对象(上)
【C++基础 】类和对象(上)
|
12天前
|
编译器 C++
【C++】string类的使用④(字符串操作String operations )
这篇博客探讨了C++ STL中`std::string`的几个关键操作,如`c_str()`和`data()`,它们分别返回指向字符串的const char*指针,前者保证以&#39;\0&#39;结尾,后者不保证。`get_allocator()`返回内存分配器,通常不直接使用。`copy()`函数用于将字符串部分复制到字符数组,不添加&#39;\0&#39;。`find()`和`rfind()`用于向前和向后搜索子串或字符。`npos`是string类中的一个常量,表示找不到匹配项时的返回值。博客通过实例展示了这些函数的用法。
|
12天前
|
存储 C++
【C++】string类的使用③(非成员函数重载Non-member function overloads)
这篇文章探讨了C++中`std::string`的`replace`和`swap`函数以及非成员函数重载。`replace`提供了多种方式替换字符串中的部分内容,包括使用字符串、子串、字符、字符数组和填充字符。`swap`函数用于交换两个`string`对象的内容,成员函数版本效率更高。非成员函数重载包括`operator+`实现字符串连接,关系运算符(如`==`, `&lt;`等)用于比较字符串,以及`swap`非成员函数。此外,还介绍了`getline`函数,用于按指定分隔符从输入流中读取字符串。文章强调了非成员函数在特定情况下的作用,并给出了多个示例代码。
|
12天前
|
C++
【C++】string类的使用④(常量成员Member constants)
C++ `std::string` 的 `find_first_of`, `find_last_of`, `find_first_not_of`, `find_last_not_of` 函数分别用于从不同方向查找目标字符或子串。它们都返回匹配位置,未找到则返回 `npos`。`substr` 用于提取子字符串,`compare` 则提供更灵活的字符串比较。`npos` 是一个表示最大值的常量,用于标记未找到匹配的情况。示例代码展示了这些函数的实际应用,如替换元音、分割路径、查找非字母字符等。
|
12天前
|
C++
C++】string类的使用③(修改器Modifiers)
这篇博客探讨了C++ STL中`string`类的修改器和非成员函数重载。文章介绍了`operator+=`用于在字符串末尾追加内容,并展示了不同重载形式。`append`函数提供了更多追加选项,包括子串、字符数组、单个字符等。`push_back`和`pop_back`分别用于在末尾添加和移除一个字符。`assign`用于替换字符串内容,而`insert`允许在任意位置插入字符串或字符。最后,`erase`函数用于删除字符串中的部分内容。每个函数都配以代码示例和说明。
|
12天前
|
安全 编译器 C++
【C++】string类的使用②(元素获取Element access)
```markdown 探索C++ `string`方法:`clear()`保持容量不变使字符串变空;`empty()`检查长度是否为0;C++11的`shrink_to_fit()`尝试减少容量。`operator[]`和`at()`安全访问元素,越界时`at()`抛异常。`back()`和`front()`分别访问首尾元素。了解这些,轻松操作字符串!💡 ```
|
12天前
|
存储 编译器 Linux
【C++】string类的使用②(容量接口Capacity )
这篇博客探讨了C++ STL中string的容量接口和元素访问方法。`size()`和`length()`函数等价,返回字符串的长度;`capacity()`提供已分配的字节数,可能大于长度;`max_size()`给出理论最大长度;`reserve()`预分配空间,不改变内容;`resize()`改变字符串长度,可指定填充字符。这些接口用于优化内存管理和适应字符串操作需求。
|
12天前
|
C++ 容器
【C++】string类的使用①(迭代器接口begin,end,rbegin和rend)
迭代器接口是获取容器元素指针的成员函数。`begin()`返回首元素的正向迭代器,`end()`返回末元素之后的位置。`rbegin()`和`rend()`提供反向迭代器,分别指向尾元素和首元素之前。C++11增加了const版本以供只读访问。示例代码展示了如何使用这些迭代器遍历字符串。