阿里云PAI发布基于HLO的全自动分布式系统 TePDist,并宣布开源!

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云PAI发布基于HLO的全自动分布式系统 TePDist,并宣布开源!

近日,阿里云机器学习平台PAI正式发布自研的基于HLO的全自动分布式深度学习系统 TePDist。它通过在HLO上做分布式策略搜索,能够与用户模型构建语言解耦。并且在保持通用性的同时,能够在可接受的策略搜索时间内,追求高性能分布式策略,同时用户无需修改模型主体代码,系统能够全自动地帮助用户做分布式扩展,有效解决了分布式框架长期以来在实际生产场景中手工优化和自动分布式工作存在的诸多性能和效率问题。

TePDist不仅仅是一个分布式Compiler,还拥有自己的分布式Runtime,以解决深度学习模型并行策略的自动搜索与分布式策略实施问题。在架构方面,TePDist采用Client/Server模式,实现分布式策略与模型描述的解耦。Server端是TePDist最重要部分,以HLO IR作为输入,自动探索并实施分布式并行策略;Client端以用户描述的模型为输入,将其转换成HLO IR。因此,任何具有转换HLO IR能力的Client,都可经过适配后接入Server端。

1.png


在功能方面,TePDist分为两个部分。一是在HLO IR上进行SPMD(Data Parallel和Sharding)和Pipeline并行的策略搜索。并以此构建编译基于Task Graph的执行计划。二是高效运行执行计划的分布式执行引擎。同时,TePDist提供了不同优化级别,高优化级别更加追求分布式策略质量,低优化级别会额外采取一些Heuristic,以较为微小策略质量牺牲,换取更快地搜索时间,以此满足落地需求。

性能上,TePDist通过在GPT和MoE模型上SPMD+Pipeline混合策略的模型扩展性实验,TePDist能够使GPT和MoE分别达到峰值能力的62%和58%。同时,在自动化方面的通用性上,TePDist也通过了VGG-19,DNABert和UNet等模型实验验证。

一直以来,大模型在模型效果上被证明具有显著优势。而ChatGPT的出现,证明了其在工业生产工具方面具有巨大潜力。阿里云机器学习平台PAI也宣布将TePDist开源,与AI开发者共同打造更快更好的自动分布式系统全面助力AI大模型发展!

开源地址:https://github.com/alibaba/TePDist

开源钉群:

image.png

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
146 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
30天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
65 4
|
2月前
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台
|
2月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
241 5
|
3月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
4月前
|
机器学习/深度学习 人工智能 算法
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
108 1
|
5月前
|
机器学习/深度学习 资源调度 分布式计算
阿里PAI-ChatLearn:大规模 Alignment高效训练框架正式开源
PAI-ChatLearn现已全面开源,助力用户快速、高效的Alignment训练体验。借助ChatLearn,用户可全身心投入于模型设计与效果优化,无需分心于底层技术细节。ChatLearn将承担起资源调度、数据传输、参数同步、分布式运行管理以及确保系统高效稳定运作的重任,为用户提供一站式解决方案。
|
5月前
|
机器学习/深度学习 存储 缓存
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
16天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
40 2

相关产品

  • 人工智能平台 PAI