算法的时间复杂度和空间复杂度分析

简介: 实验目的实验内容实验过程运行结果复杂度分析

实验目的

通过本次实验,了解算法复杂度的分析方法,掌握递归算法时间复杂度的递推计算过程。


实验内容

二路归并排序的算法设计和复杂度分析。


实验过程

1.算法设计

归并排序:是指将两个或两个以上的的有序序列合并成一个有序序列。

排序思想:

(1)将每一个数据看成一个单独的有序序列,则n个待排序数据就是n个长度唯一的有序子序列;

(2)对所有有序子序列进行两两归并,得到n/2个长度为1或2的有序子序列–这这为一趟归并;

(3)重复(2),直到得到长度为n的有序序列为止。

上述排序过程中,子序列总是两两归并,极为二路归并排序。这算法设计的重点是如何将相邻的两个子序列归并成一个子序列。

算法实验原理:

1、申请一个和原始排序数组空间一样大的额外数组。

2、定义归并初始长度 length。

3、将数组分块。

4、将分块数组进行排序,把数据存入额外一个数组。(下一次用额外数组排序,数据存入原始数组,轮流存储)

5、增加归并长度 length*2。

6、重复3-5步,即可得到排序。

2.程序清单


#include <stdio.h>
#include <stdlib.h>
// 将a[s...m]和a[m+1...e]两个有序子序列归并为有序
// 归并后的序列存放数组b中 
void merge(int a[], int s, int m, int e)
{
    int i,j,k;
    // 申请临时空间存放有序序列
    int *b = (int *)malloc(sizeof(int)*(e-s+1));
    for(i=m+1,k=0,j=s; j<=m && i<=e; ++k)
    {
        if(a[j] <= a[i])
            b[k] = a[j++];
        else
            b[k] = a[i++];
    }
    while(j<=m)
    {
        b[k] = a[j];
        k++;
        j++;
    }
    while(i<=e)
    {
        b[k] = a[i];
        k++;
        i++;
    }
    // 排序完成后,复制到原数组a
    for(i=s,k=0; i<=e; i++,k++)
        a[i] = b[k];
    free(b);
}
// 对a[s...e]序列进行归并排序 
void msort(int a[], int s, int e)
{
    if (s<e)
    {
        // 将整个序列一分为二
        int m = (s+e)/2;
        msort(a,s,m);
        msort(a,m+1,e);
        merge(a,s,m,e);
    }
}
void merge_sort(int a[], int length)
{
    msort(a,0,length-1);
}
int main(void)
{
    int a[10] = {4,3,1,2,6,5,0,9,8,7};
    merge_sort(a,10);
    int i;
    for(i=0; i<10; i++)
        printf("%d ", a[i]);
    return 0;
}


运行结果

34.png


35.png


复杂度分析


36.png


相关文章
|
3月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
233 3
|
6月前
|
机器学习/深度学习 边缘计算 算法
NOMA和OFDMA优化算法分析
NOMA和OFDMA优化算法分析
320 127
|
8月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
470 4
|
3月前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
|
4月前
|
机器学习/深度学习 算法 5G
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
173 0
|
5月前
|
编解码 算法 5G
MIMO雷达空间谱估计中Capon算法与MUSIC算法的对比分析及实现
MIMO雷达空间谱估计中Capon算法与MUSIC算法的对比分析及实现
365 2
|
5月前
|
人工智能 自然语言处理 算法
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。
|
8月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
197 14
|
9月前
|
自然语言处理 算法 安全
境内深度合成服务算法备案通过名单分析报告
本报告基于《境内深度合成服务算法备案通过名单》,分析了2023年6月至2025年3月公布的10批备案数据,涵盖属地分布、行业应用及产品形式等多个维度。报告显示,深度合成算法主要集中于经济发达地区,如北京、广东、上海等地,涉及教育、医疗、金融、娱乐等多行业。未来趋势显示技术将向多模态融合、行业定制化和安全合规方向发展。建议企业加强技术研发、拓展应用场景、关注政策动态,以在深度合成领域抢占先机。此分析旨在为企业提供参考,助力把握技术发展机遇。
境内深度合成服务算法备案通过名单分析报告
|
9月前
|
供应链 算法 搜索推荐
从公布的前十一批其他算法备案通过名单分析
2025年3月12日,国家网信办发布算法备案信息,深度合成算法通过395款,其他算法45款。前10次备案中,深度合成算法累计3234款,其他类别647款。个性化推送类占比49%,涵盖电商、资讯、视频推荐;检索过滤类占31.53%,用于搜索优化和内容安全;调度决策类占9.12%,集中在物流配送等;排序精选类占8.81%,生成合成类占1.55%。应用领域包括电商、社交媒体、物流、金融、医疗等,互联网科技企业主导,技术向垂直行业渗透,内容安全和多模态技术成新增长点。未来大模型检索和多模态生成或成重点。
从公布的前十一批其他算法备案通过名单分析

热门文章

最新文章