线段树总结分析第三版(下)

简介: 线段树总结分析第三版

习题1最大连续区间维护,例题3的简化版:

题链:

Hotel

22ACM集训队-树状数组与线段树基础 - Virtual Judge (vjudge.net)

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 5e4 + 10;
struct node{
  int l,    r;
  int fmax,lmax,rmax;
  int lazy;
}tr[N<<2];
void pushdown(node &tr,int lazy){
  tr.fmax = lazy * (tr.r - tr.l + 1);
  tr.lmax = tr.rmax = tr.fmax;
  tr.lazy = lazy;
}
void pushdown(int u){
  if(tr[u].lazy != -1){
    pushdown(tr[u<<1],tr[u].lazy) ,pushdown(tr[u<<1|1],tr[u].lazy);
    tr[u].lazy = -1;
  }
}
void pushup(node &tr,node &l,node &r){
  tr.fmax = max(max(l.fmax,r.fmax),l.rmax + r.lmax);
  tr.lmax = l.lmax + (l.lmax == l.r - l.l + 1 ? r.lmax : 0);
  tr.rmax = r.rmax + (r.rmax == r.r - r.l + 1 ? l.rmax : 0);
}
void pushup(int u){
  pushup(tr[u],tr[u<<1],tr[u<<1|1]);
}
void build(int u,int l,int r){
  tr[u].l = l,tr[u].r = r,tr[u].fmax  = tr[u].lmax = tr[u].rmax = 1,tr[u].lazy = -1;
  if(l == r) return;
  int mid = l + r >> 1;
  build(u<<1,l,mid),build(u<<1|1,mid+1,r);
  pushup(u);
}
int findleft(int u,int v){
  if(tr[u].l == tr[u].r) return tr[u].l;
  pushdown(u);
  if(tr[u<<1].fmax >= v) return findleft(u<<1,v);
  if(tr[u<<1].rmax + tr[u<<1|1].lmax >= v) return tr[u<<1].r - tr[u<<1].rmax + 1;
  return findleft(u<<1|1,v);
}
void modify(int u,int l,int r,int v){
  if(tr[u].l >= l && tr[u].r <= r){
    pushdown(tr[u],v);
    return;
  }
  pushdown(u);
  int mid = tr[u].l + tr[u].r >> 1;
  if(l <= mid) modify(u<<1,l,r,v);
  if(r > mid) modify(u<<1|1,l,r,v);
  pushup(u);
}
int main(){
  int n,m;
  cin >> n >> m;
  build(1,1,n);
  while(m--){
    int op;
    scanf("%d",&op);
    if(op == 1){
      int x;
      scanf("%d",&x);
      if(tr[1].fmax >= x) {
        int l = findleft(1,x);
        printf("%d\n",l);
        modify(1,l,l+x-1,0);
      }
      else {
        printf("0\n");
      }
    }
    else{
      int l,r;
      scanf("%d%d",&l,&r);
      modify(1,l,l+r-1,1);
    }
  }
  return 0;
}

习题2批量替换,例题1的变式

就只是根据操作变了个pushdown。

根节点tr[1].sum,查询树的总和

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
struct node{
  int l,r;
  int sum;
  int lazy;
}tr[N<<2];
void pushdown(node &tr,int lazy){
  tr.sum = lazy * (tr.r - tr.l + 1);
  tr.lazy = lazy;
}
void pushdown(int u){
  if(tr[u].lazy != -1){
    pushdown(tr[u<<1],tr[u].lazy),pushdown(tr[u<<1|1],tr[u].lazy);
    tr[u].lazy = -1;
  }
}
void pushup(int u){
  tr[u].sum = tr[u<<1].sum + tr[u<<1|1].sum;
}
void build(int u,int l,int r){
  tr[u] = {l,r,1,-1};
  if(l == r) return;
  int mid = l + r >> 1;
  build(u<<1,l,mid),build(u<<1|1,mid+1,r);
  pushup(u);
}
void modify(int u,int l,int r,int v){
  if(tr[u].l >= l && tr[u].r <= r){
    pushdown(tr[u],v);
    return;
  }
  pushdown(u);
  int mid = tr[u].l + tr[u].r >> 1;
  if(l <= mid) modify(u<<1,l,r,v);
  if(r > mid) modify(u<<1|1,l,r,v);
  pushup(u);
}
int main(){
  int t;
  cin >> t;
  for(int Case = 1;Case <= t;Case++){
    int n,m;
    scanf("%d%d",&n,&m);
    build(1,1,n);
    while(m--){
      int l,r,v;
      scanf("%d%d%d",&l,&r,&v);
      modify(1,l,r,v);
    }
    printf("Case %d: The total value of the hook is %d.\n",Case,tr[1].sum);
  }
  return 0;
}

2.批量自适应修改

题链

Q - Hotel

22ACM集训队-树状数组与线段树基础 - Virtual Judge (vjudge.net)

卡壳点:

忘记build,递归的 tr[u].l == tr[u].r == 写成 =

区间修改,题目给的时l和len,以为是l和r导致错误

用l和len表示r错误,写成了l + len,应该是l + len -1 ;

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 5e4 + 10;
struct node{
  int l,    r;
  int fmax,lmax,rmax;
  int lazy;
}tr[N<<2];
void pushdown(node &tr,int lazy){
  tr.fmax = lazy * (tr.r - tr.l + 1);
  tr.lmax = tr.rmax = tr.fmax;
  tr.lazy = lazy;
}
void pushdown(int u){
  if(tr[u].lazy != -1){
    pushdown(tr[u<<1],tr[u].lazy) ,pushdown(tr[u<<1|1],tr[u].lazy);
    tr[u].lazy = -1;
  }
}
void pushup(node &tr,node &l,node &r){
  tr.fmax = max(max(l.fmax,r.fmax),l.rmax + r.lmax);
  tr.lmax = l.lmax + (l.lmax == l.r - l.l + 1 ? r.lmax : 0);
  tr.rmax = r.rmax + (r.rmax == r.r - r.l + 1 ? l.rmax : 0);
}
void pushup(int u){
  pushup(tr[u],tr[u<<1],tr[u<<1|1]);
}
void build(int u,int l,int r){
  tr[u].l = l,tr[u].r = r,tr[u].fmax  = tr[u].lmax = tr[u].rmax = 1,tr[u].lazy = -1;
  if(l == r) return;
  int mid = l + r >> 1;
  build(u<<1,l,mid),build(u<<1|1,mid+1,r);
  pushup(u);
}
int findleft(int u,int v){
  if(tr[u].l == tr[u].r) return tr[u].l;
  pushdown(u);
  if(tr[u<<1].fmax >= v) return findleft(u<<1,v);
  if(tr[u<<1].rmax + tr[u<<1|1].lmax >= v) return tr[u<<1].r - tr[u<<1].rmax + 1;
  return findleft(u<<1|1,v);
}
void modify(int u,int l,int r,int v){
  if(tr[u].l >= l && tr[u].r <= r){
    pushdown(tr[u],v);
    return;
  }
  pushdown(u);
  int mid = tr[u].l + tr[u].r >> 1;
  if(l <= mid) modify(u<<1,l,r,v);
  if(r > mid) modify(u<<1|1,l,r,v);
  pushup(u);
}
int main(){
  int n,m;
  cin >> n >> m;
  build(1,1,n);
  while(m--){
    int op;
    scanf("%d",&op);
    if(op == 1){
      int x;
      scanf("%d",&x);
      if(tr[1].fmax >= x) {
        int l = findleft(1,x);
        printf("%d\n",l);
        modify(1,l,l+x-1,0);
      }
      else {
        printf("0\n");
      }
    }
    else{
      int l,r;
      scanf("%d%d",&l,&r);
      modify(1,l,l+r-1,1);
    }
  }
  return 0;
}

前提条件

是区间修改,区间查询,且修改操作的修改的值是根据具体节点储存的值而变化的,比如开根,幂,替换,乘除;

新做的题里发现替换可以直接批量赋值来实现,属于等值修改。

情景

对一个序列里的元素执行k次自适应操作,每次操作一个区间,然后询问区间内所有元素的值。

也有询问某个区间内所有值经过某种处理后的值。(此种问法是询问时用一个变量储存找到的值,经过处理后返回

例题1单种操作

Can you answer these queries?

22ACM集训队-树状数组与线段树基础 - Virtual Judge (vjudge.net)

主要就是把modify的递归条件改成了和传统query操作相同的有交集

复杂度比较高,需要一些剪枝

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
struct node{
  int l,r;
  ll sum;
}tr[N<<2];
ll w[N];
void pushup(int u){
  tr[u].sum = tr[u<<1].sum + tr[u<<1|1].sum;
}
void build(int u,int l,int r){
  tr[u] = {l,r,w[r]};
//  cout << w[r] << endl;
  if(l == r) return;
  int mid = l + r >> 1;
  build(u<<1,l,mid),build(u<<1|1,mid+1,r);
  pushup(u);
}
ll query(int u,int l,int r){
  if(tr[u].l >= l && tr[u].r <= r) {
    return tr[u].sum;
  } 
//    cout << tr[u].sum;
  ll res =0 ;
  int mid = tr[u].l + tr[u].r >> 1;
  if(l <= mid) res += query(u<<1,l,r);
  if(r > mid) res += query(u<<1|1,l,r);
  return res;
}
void modify(int u,int l,int r){
  if(tr[u].l == tr[u].r) tr[u].sum = sqrt(tr[u].sum);
  else{
    if(tr[u].sum == tr[u].r - tr[u].l + 1) return;
    int mid = tr[u].l + tr[u].r >> 1;
    if(l <= mid) modify(u<<1,l,r);
    if(r > mid) modify(u<<1|1,l,r);
    pushup(u);  
  }
}
int main()
{
    int T = 1;
    int n, m;
    while (cin >> n) {
        for(int i = 1;i <= n;i++) scanf("%lld", &w[i]);
        build(1,1, n);
        printf("Case #%d:\n", T++);
        scanf("%d", &m);
        while (m--) {
            int op, l, r; scanf("%d %d %d", &op, &l, &r);
            if (l > r) swap(l, r);
//            cout << l << " " << r << endl;
            if (op) printf("%lld\n", query(1,l, r));
            else modify(1,l, r);
        }
        printf("\n");
    }
    return 0;
}

例题2多种操作

Transformation HDU - 4578

22ACM集训队-树状数组与线段树基础 - Virtual Judge (vjudge.net)

题解代码

Transformation HDU - 4578 (线段树,审题很重要)_Soar-的博客-CSDN博客

#include<bits/stdc++.h>
using namespace std;
#define lson i<<1,l,m
#define rson i<<1|1, m+1,r
const int mod = 10007;
const int maxn=1e5+10;
int x[maxn<<2],flag[maxn<<2];
 x是tr,flag是lazy
void pushup(int i,int l,int r)
{
    if(!flag[i<<1] || !flag[i<<1|1])左右子节点无值
        flag[i] = 0;
    else if(x[i<<1] != x[i<<1|1])左右子节点有值且不等
        flag[i] = 0;
    else flag[i]=1,x[i]=x[i<<1];左右子节点值相等
    所以这是一个记录懒标记的函数,如果左右子节点的值相同,就上传。
    通过用父节点的节点的值来代表子节点的值接受处理,降低复杂度
}
void pushdown(int i,int l,int r)
{
    if(flag[i])
    {
        flag[i<<1] = flag[i<<1|1] =1;
        x[i<<1] = x[i<<1|1] = x[i];
        flag[i]=0;
    }
    这是一个下传懒标记并处理懒标记的函数,如果有懒标记,说明这个节点是代表子节点接受处理的,所以直接将值下传到子节点,然后清除懒标记
}
void update(int ql,int qr,int p,int v,int i,int l,int r)
{
  妙:直接传入op,也就是p,根据p的值进行不同操作,减少了很多赘余的代码。
  我写时想的是写3个modify,也就是update,根据op不同,调用不同的modify,麻烦得很。
    if(ql<=l && qr>=r && flag[i])
    这里是有懒标记,且节点区间全都在需要处理的区间内,直接处理当前节点,然后pushdown,就可以实现区间处理
    {
        if(p==1)
            x[i] = (x[i]+v)%mod;
        else if(p==2)
            x[i] = (x[i]*v)%mod;
        else x[i] = v;
        修改当前节点值的话是不需要pushup的,因为pushup的操作是根据子节点的值来决定是否赋予当前节点一个懒标记,只修改当前节点值,代表当前节点已经是叶子节点,或者左右节点值相同,所以就算pushup了,懒标记还是会保持原有状态
        return;
    }
    pushdown(i,l,r);
 可能没有懒标记,会需要逐个单点修改,所以用两个if的原始query递归形式
    int m = (l+r)>>1;
    if(ql<=m) update(ql,qr,p,v,lson);
    if(qr>m) update(ql,qr,p,v,rson);
    进行子节点单点值修改操作后都需要pushup,来更新懒标记状态
    pushup(i,l,r);
}
int query(int ql,int qr,int num,int i,int l,int r)
l,r是当前节点的l,r
{
    if(flag[i] && ql<=l && qr>=r)
    {
        int ans=1;
        for(int j=0;j<num;j++)ans=(ans*x[i])%mod;//pow操作,每次pow取余,如果是10007的三次方就有可能爆int了,所以用循环来每次操作后取余
        ans=(ans*(r-l+1))%mod;
        return ans;
    }
    pushdown(i,l,r);
    int m = (l+r)>>1;
    int ans=0;
    if(ql<=m)ans+=query(ql,qr,num,lson);
    if(qr>m)ans+=query(ql,qr,num,rson);
    return ans%mod;
}
int main()
{
    int n,m;
    while(cin>>n>>m,n||m)
    {
        memset(flag,1,sizeof flag);
        memset(x,0,sizeof x);
        int p,x,y,v;
        while(m--)
        {
            scanf("%d%d%d%d",&p,&x,&y,&v);
            if(p>=1 && p<=3)update(x,y,p,v,1,1,n);
            else printf("%d\n",query(x,y,v,1,1,n));
        }
    }
}

经过模仿后得到的acwing版代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10,mod = 10007;
struct node{
  int l,r;
  int sum;
  int lazy;
}tr[N<<2];
void pushup(int u){
  if(!tr[u<<1].lazy || !tr[u<<1|1].lazy) tr[u].lazy = 0;
  有一个子节点懒标记是0(当前节点的子节点的两个子节点的值不相等)则当前节点懒标记就变成0,由此可以推断出,懒标记的含义是表示当前节点的子树里所有节点的值 ,都相等,可以直接用当前节点的值来进行操作。 
  else if(tr[u<<1].sum != tr[u<<1|1].sum) tr[u].lazy = 0;
  else tr[u].lazy = 1,tr[u].sum = tr[u<<1].sum;
}
void pushdown(int u){
  if(tr[u].lazy){
    tr[u<<1].lazy = tr[u<<1|1].lazy = 1;
    tr[u<<1].sum = tr[u<<1|1].sum = tr[u].sum;
    tr[u].lazy = 0;
  }
}
void build(int u,int l,int r){
只有叶子节点才能初始化成lazy1
  if(l == r){
    tr[u] = {l,r,0,1};
     return;
  }
  tr[u] = {l,r};
  int mid = l + r >> 1;
  build(u<<1,l,mid),build(u<<1|1,mid+1,r);
}
void modify(int u,int l,int r,int op,int v){
  if(tr[u].l >= l && tr[u].r <= r && tr[u].lazy){
    if(op == 1) tr[u].sum = (tr[u].sum + v) % mod;
    else if(op == 2) tr[u].sum = (tr[u].sum * v)%mod;
    else {
      tr[u].sum = v;  
    }   
    return;
  }
  pushdown(u);
  有懒标记要先处理,然后再运算。
  int mid = tr[u].l + tr[u].r >> 1;
  if(l <= mid) modify(u<<1,l,r,op,v);
  if(r > mid) modify(u<<1|1,l,r,op,v);
  pushup(u);
}
int query(int u,int l,int r,int v){
  if(tr[u].l  >= l && tr[u].r <= r && tr[u].lazy){
    int res = 1;
    for(int i = 0;i < v;i++) res = (res * tr[u].sum) % mod;
    res = res * (tr[u].r - tr[u].l + 1) % mod;
    return res;
  }
  pushdown(u);
  int mid = tr[u].l + tr[u].r >> 1;
  int res = 0;
  if(l <= mid) res = (res + query(u<<1,l,r,v) ) %mod; 
  if(r > mid) res = (res + query(u<<1|1,l,r,v)) % mod;
  return res % mod;
}
int main(){
  int n,m;
  while(cin >> n >> m,n||m){
//    for(int i=0;i <= N << 2;i++) tr[i]= {0,0,0,0};  
    build(1,1,n);
    int op,l,r,v;
    while(m--){
      scanf("%d%d%d%d",&op,&l,&r,&v);
//      cout << op << " " << l << " " << r << " " << v << endl;
      if(op >=1 && op <= 3){
        modify(1,l,r,op,v);
      }
      else {
        printf("%d\n",query(1,l,r,v));
      }
    }
  }
  return  0;
}

注意

注意点就是非数组模拟节点的代码要用build初始化,然后叶子节点懒标记初始化为1,因为代表的含义是两个子节点值是否相等
懒标记区间自适应修改至少耗时2s,如果能操作简单,能用简单的语句来确定是否可以省略操作(如例题1tr[u].r - tr[u].l + 1) == tr[u].sum)判断区间内是否全为1而可以省略掉区间开方操作。

其他套路:

涉及到一个多组输入的套路

前提条件是没有明确组数,结束关键词的多组数据集输入

取反while(~scanf(“%d”,&n)

和while(scanf(“%d”,&n) != EOF)

还有while(cin >> n)三种形式

习题1开方单点剪枝1e5 + 2e5,常数n为6以内:

题链

花神游历各国

22ACM集训队-树状数组与线段树基础 - Virtual Judge (vjudge.net)

比较

与例题1是同一题型,但例题1的题解里没有用到fmax来维护区间最大值,而是直接用

tr[u].sum 与 tr[u].r - tr[u].l +1 是否相等来判断是否return。

例题1的做法仅限于元素最小是1的情况下,

习题1的元素最小为0,所以不能用这种做法。

于是归结出第一个剪枝套路

卡壳点:

没注意node内的maxn也要在modify内开方。

注意操作时除了l,r之外的属性基本都要处理

build初始化,注意叶子节点和根节点的初始化可能会不同。

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
struct node{
  int l,r;
  ll sum;
  int maxn;
}tr[N<<2];
ll w[N];
void pushup(int u){
  tr[u].sum = tr[u<<1].sum + tr[u<<1|1].sum;
  tr[u].maxn = max(tr[u<<1].maxn,tr[u<<1|1].maxn);
}
void build(int u,int l,int r){
  if(l == r){
    tr[u] = {l,r,w[r],w[r]};
    return;
  }tr[u] = {l,r,0,0 };
//  cout << w[r] << endl;
  int mid = l + r >> 1;
  build(u<<1,l,mid),build(u<<1|1,mid+1,r);
  pushup(u);
}
ll query(int u,int l,int r){
  if(tr[u].l >= l && tr[u].r <= r) {
    return tr[u].sum;
  } 
//    cout << tr[u].sum;
  ll res =0 ;
  int mid = tr[u].l + tr[u].r >> 1;
  if(l <= mid) res += query(u<<1,l,r);
  if(r > mid) res += query(u<<1|1,l,r);
  return res;
}
void modify(int u,int l,int r){
      if(tr[u].maxn <= 1) return;
  if(tr[u].l == tr[u].r) {
  tr[u].sum = sqrt(tr[u].sum);       tr[u].maxn = sqrt(tr[u].maxn);return;}
    int mid = tr[u].l + tr[u].r >> 1;
    if(l <= mid) modify(u<<1,l,r);
    if(r > mid) modify(u<<1|1,l,r);
    pushup(u);  
}
int main()
{
    int T = 1;
    int n, m;
    while (cin >> n) {
        for(int i = 1;i <= n;i++) scanf("%lld", &w[i]);
        build(1,1, n);
//        printf("Case #%d:\n", T++);
        scanf("%d", &m);
        while (m--) {
            int op, l, r; scanf("%d %d %d", &op, &l, &r);
//            cout << l << " " << r << endl;
            if (op==1) printf("%lld\n", query(1,l, r));
            else modify(1,l, r);
        }
        printf("\n");
    }
    return 0;
}

套路:

区间单点修改开平方剪枝:

前提条件,

对区间进行开平方,并需要动态维护区间和:

应对

节点中用fmax维护区间最值,modify时区间最值<=1就直接return。

如果节点值最小是1的话,直接通过判断tr[u].sum 与 tr[u].r - tr[u].l +1 是否相等可以确定是否需要剪枝。(区间值全为1)

3.区间染色

普通例题

题链

22ACM集训队-树状数组与线段树基础 - Virtual Judge (vjudge.net)

套路:

lazy代替sum:

前提条件:

题目不需要求区间长度,操作时各种值无优先级,在区间上互相进行区间覆盖操作,求最后的状态。

情景

操作之间存在覆盖,遮挡的影响

之前画的一些线段可能会被后面的一些线段所覆盖
给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000) 。求出最后还能看见多少张海报。
疑问

染过色后lazy被pushdown下移会不会有影响?

:modify经过lazy所在节点时,也就是lazy底下有节点被另外染色了此时lazy下移,这个节点没资格再代表其下的所有节点了。

判断是否颜色相同可以用个pushup,见批量自适应修改里的例题2多种操作里的pushup,但没什么必要。

代码

统计颜色种类及段数。

卡壳点:segment fault

用N作为下标访问元素时要养成写N-1的习惯,防止出现数组越界

#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 1E4 + 10;
cou要开8011
int cou[N];
struct node {
    int l, r;
    int lazy;
}t[N << 2];
void pushdown(node& op, int lazy) { op.lazy = lazy; }
void pushdown(int x) {
    if (!t[x].lazy) return; 
    pushdown(t[x << 1], t[x].lazy), pushdown(t[x << 1 | 1], t[x].lazy);
    t[x].lazy = 0;
}
void build(int l, int r, int x = 1) {
  t[x] = { l, r, 0 };
    if (l == r) return;
    int mid = l + r >> 1;
    build(l, mid, x << 1), build(mid + 1, r, x << 1 | 1);
}
void modify(int l, int r, int c, int x = 1) {
    if (l <= t[x].l && r >= t[x].r) { pushdown(t[x], c); return; }
    写错条件成叶子节点。
    pushdown(x);
    int mid = t[x].l + t[x].r >> 1;
    忘记/2
    if (l <= mid) modify(l, r, c, x << 1);
    if (r > mid) modify(l, r, c, x << 1 | 1);
    忘记变成x<<1|1
}
int last = 0; //表示上一次碰到的颜色, 记得当遍历叶子结点时没有颜色的时候也要记录.
void ask(int x = 1) {
    if (last != t[x].lazy) cou[t[x].lazy]++;
    判断是否间隔开
    if (t[x].lazy || t[x].l == t[x].r) { last = t[x].lazy; return; }
    当前节点lazy不为0,表示当前节点下的所有节点都经过区间修改,变成一样的颜色,不用再继续深入。
    //  有标记直接进上面的语句了,不需要pushdown 
    遍历整棵树
    ask(x << 1), ask(x << 1 | 1);
    先左后右保证last一定在t[x]的左边
}
int main()
{
    int n;
    while (~scanf("%d", &n)) {
        build(1, 8010); last = 0;  
        memset(cou, 0, sizeof cou);
        o1查询的优化。
        rep(i, n) {
            int l, r, c; scanf("%d %d %d", &l, &r, &c);
            modify(l + 1, r, c + 1); //这里是为了让建树区间下标从1开始, 涂色记录也从1开始
        }
        ask();
        rep(i, 8010) if (cou[i]) printf("%d %d\n", i - 1, cou[i]);
        printf("\n");
    }
    return 0;
}

离散化例题

离散化,下标很大,值很小

我们看这组数据[1,10],[1,3],[6,10],很明显答案是3

但是离散化之后为[1,4],[1,2],[3,4],答案变成了2

为解决这种问题,我们可以在更新线段树的时候将区间从[l,r]变成[l,r-1],就将区间转化成了[1,3],[1,1],[3,3]这样的树

但是当我们遇到这样的数据[1,3],[1,1],[2,2],[3,3],就会导致区间更新时出错,我们可以将初始数据的r都加上1,就排除了li和ri相等的情况,如果没有这种情况,离散化后的区间也都是一样的

其实这道题数据很弱,不管这样的情况也能过(逃

正解https://www.luogu.com.cn/paste/vl2ora2z

#include <iostream>
#include <vector>
#include <cstdio>
#include <algorithm>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 1E5 + 10;
bool vis[N]; //标记是否已经出现过第i张海报
struct node {
   int l, r;
   int id; //id表示lazy标签, 也表示当前节点值. 
}t[N << 2];
vector<int> v; vector<pair<int, int> > area; //v为离散化数组, area存放海报区间
int find(int x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }
离散化用
void pushdown(node& op, int id) { op.id = id; }
void pushdown(int x) {
   if (!t[x].id) return;
   pushdown(t[x << 1], t[x].id), pushdown(t[x << 1 | 1], t[x].id);
   t[x].id = 0; 
}
//因为线段树内部不维护任何数值, 所以也可以省去pushup这一操作.
void build(int l, int r, int x = 1) {
   t[x].l = l,t[x].r = r,t[x].id = 0 ;//id: 特别的, 如果0也是染色的点, 那么应初始化为-1
   if (l == r) return;
   int mid = l + r >> 1;
   build(l, mid, x << 1), build(mid + 1, r, x << 1 | 1);
}
void modify(int l, int r, int c, int x = 1) {
   if (l <= t[x].l && r >= t[x].r) { pushdown(t[x], c); return; }
   pushdown(x);
   int mid = t[x].l + t[x].r >> 1;
   if (l <= mid) modify(l, r, c, x << 1);
   if (r > mid) modify(l, r, c, x << 1 | 1);
}
int ask(int x = 1) { 
   if (t[x].id) { //当前子树均为同一值, 没必要再递归下去了
       if (vis[t[x].id]) return 0;
       return vis[t[x].id] = 1;
   }
   if (t[x].l == t[x].r) return 0; //到叶子结点一定要结束递归
   return ask(x << 1) + ask(x << 1 | 1);
}
int main()
{
   int T; cin >> T; 
   while (T--) {
       v.clear(); v.push_back(-0x3f3f3f3f); //这里是为了离散化下标从1开始
       area.clear();
       int n; scanf("%d", &n);
       rep(i, n) {
           vis[i] = 0; //顺带初始化vis
           int l, r; scanf("%d %d", &l, &r);
           r++; 
           v.push_back(l), v.push_back(r);
           area.push_back(make_pair(l,r));
       }
       /* 离散化部分 */
       sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end());
       rep(i, n) if (v[i] - v[i - 1] != 1) v.push_back(v[i] - 1); //记为*
       sort(v.begin(), v.end());
       build(1, v.size() - 1); //因为我的v数组有个-INF, 所以实际的建树大小应为v.size()-1
       for (int i = 0; i < n; ++i) {
           int l = area[i].first, r = area[i].second;
           l = find(l), r = find(r);
           modify(l, r-1, i + 1); //个人习惯编号从1开始
       }
       printf("%d\n", ask());
   }
   return 0;
}

区别

区间等值修改里,

lazy存的是子树中所有节点要修改的值或要修改成的值,根据题意决定初始化的值,如例题1中批量+v操作,初始化为0,例题2批量替换,初始化为v的定义域之外的值。

sum存的是子树所有节点sum的总和 ,一般初始化为0.

是一个修改时给节点打上lazy,遇到lazy时解开lazy的过程。


区间自适应修改里,

lazy作为一个bool变量,存的是当前节点是否能代表子树接受修改,根据题意决定初始化的值

sum只有在lazy为1时有实际意义,

存的是这颗所有节点的值都相同的子树里的这个相同的值

修改值时,直接修改节点的值


目录
相关文章
|
算法
【AcWing算法基础课】第五章 动态规划(未完待续)(3)
当然,一个人能够滑动到某相邻区域的前提是该区域的高度低于自己目前所在区域的高度。
106 0
|
算法
【AcWing算法基础课】第五章 动态规划(未完待续)(1)
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且 总价值最大 。
62 0
【AcWing算法基础课】第五章 动态规划(未完待续)(1)
|
人工智能 算法 JavaScript
【AcWing算法基础课】第五章 动态规划(未完待续)(2)
给定一个如下图所示的数字三角形,从 顶部 出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点, 一直走到底层 ,要求找出一条路径,使 路径上的数字的和最大。
64 0
|
机器学习/深度学习 自然语言处理 算法
『算法导论』什么是算法?什么是程序?
算法(Algorithm)是指解决问题的方法或过程,它包含一系列步骤,用来将 输入数据转换成输出结果 算法具有以下性质: • 输入:有零个或多个输入 • 输出:至少有一个输出 • 确定性:组成算法的每条指令清晰、无歧义 • 有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限
669 0
算法导论(第三版)具体算法解析与理解
算法导论(第三版)具体算法解析与理解
线段树与树状数组总结分析(可能是最终版)(上)
线段树与树状数组总结分析(可能是最终版)
54 0
线段树与树状数组总结分析(可能是最终版)(中)
线段树与树状数组总结分析(可能是最终版)
47 0
|
机器学习/深度学习
线段树与树状数组总结分析(可能是最终版)(下)
线段树与树状数组总结分析(可能是最终版)
77 0