【C语言】全面解析数据在内存中的存储

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: C语言中有char、short、int、long、long long、float和doubole这些数据类型。这些数据类型也叫内置类型。

前言


C语言中有char、short、int、long、long long、float和doubole这些数据类型。这些数据类型也叫内置类型

所占存储空间的大小:

数据类型 所占存储空间的大小
char 1个字节
int 4个字节
short 4个字节
long 4个字节
long long 32位平台下占4个字节 ,64位平台下占8个字节
float 4个字节
double 8个字节


类型的基本分类


整型

整型一共有char、int、short、long和long long这五种类型。

char类型的数据在内存中存放的是ASCII码值,是整型,所以也被当成整型。

这些整型都分为有符号的整型和无符号的整型,具体可以看下面:

int a = 5;

signed int b;//有符号的整型

unsigned int c;//无符号的整型

signed是有符号的,unsigned是无符号的。

平时我们定义变量时,一般都不会加前面,只是int 变量名 = 数据,其实这就相当于signed int 变量名 = 数据。

注意 \color{#FF0000}{注意}注意 :但是char这个类型比较特殊,在C语言的标准中,没有定义char到底是有符号的还是无符号的,取决于编译器。

关于无符号和无符号:

前面我们说到了int类型在内存中占4个字节,1个字节就是8个bit。

比特位即bit,是计算机最小的存储单位。以0或1来表示比特位的值(二进制表示)。

140.png

10的二进制序列就如图所示,其中第一位是符号位,0代表正数,1代表负数


浮点数

浮点数有float和double,一般用来表示小数。

float的表示精度低,存储数值范围较小。

double的表示精度高,存储数值范围较大。


自定义类型

自定义类型有数组类型、结构体类型、枚举、联合体、指针类型和空类型(void)。在这就不一一详细讲了。

整型在内存中的存储

在了解整型在内存中的存储前,先了解一个计算机的原码、反码、补码。


原码、反码、补码

数值表示形式有:二进制、八进制、十进制和十六进制。

整数的二进制也有三种表达形式:原码、反码、补码。

整数中:

正数的原码反码补码相同

负数的原码反码补码是需要计算的


原码:整数的二进制序列(注意符号位)

反码:符号位不变,其它位按位取反就是反码(0变1,1变0)

补码:反码加1就是补码

整型在内存中存放的是补码

接下来来验证内存中存放的是补码:

142.png

我定义了一个a变量,值为-10. 原码反码和补码也给大家了,因为正整数的原码、反码和补码相同,所以不用正整数验证。接下来让我们来用编译器来调试并监视来观察内存,来看看整型在内存中是如何存储的。

144.png

看上图,虽然这里面看到的是十六进制,但不要认为是以十六进制存储的,但本质存的还是二进制序列。由此我们可以得出内存中存放的是补码。


大端和小端

我们看到上图a的地址和我们写的十六进制序列是反着的,为什么?这就是大小端的问题了。

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址

中;

小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地

址中。

如何判断编译器是大端还是小端

int main()

{

int a = 1;

if(*(char*)&a == 1)

{

 printf("小端")

}

else

{

 printf("大端")

}

}

如果是小端存储存储的顺序应该是01 00 00 00 大端的话是00 00 00 01

我们对a进行取地址,然后强转成char类型的指针然后再进行解引用,因为强制类型转换了,所以只能访问1个字节的地址,如果得到的1就是小端,0就是大端。


浮点数在内存中的存储


根据国际标准IEEE(电气和电子工程协会)754,一个浮点数 (Value) 的表示其实可以这样表示:

145.png

也就是浮点数的实际值,等于符号位(sign bit)乘以指数偏移值(exponent bias)再乘以分数值(fraction)。


简单来说就是对于浮点数在内存中的存储,无论是float(32位浮点数)还是double(64)位浮点数(S),都有符号位(Exp),指数位和有效数字位(Fraction)。

147.png

对于float这种32位浮点数来说,指数位占8个bite位,有效数字位占23个bite位

对于double这种64位浮点数来说,指数位占11个bite位,有效数字位占52个bite位

符号位都是占1个bite位。

其中因为浮点数的小数部分,用二进制中难以存储,就会存在精度不准的问题。


单精和双精浮点数的有效数字分别是有存储的23和52个位,加上最左手边没有存储的第1个位,即是24和53个位。

150.png

由以上的计算,单精和双精浮点数可以保证7位和15位十进制有效数字。


总结


对于数据在内存中的存储,大家还是要重点掌握原码、反码和补码的,要会计算,然后是浮点数的存储方式,可以把它当成一个拓展知识来了解,拓展一下眼界,如果真要熟练掌握浮点数的存储规则是要研究很多东西的,大家感兴趣也可以去看一下国际标准IEEE754。

相关文章
数据解析之xpath 太6了
数据解析之xpath 太6了
|
21天前
|
存储 编译器 C语言
C语言存储类详解
在 C 语言中,存储类定义了变量的生命周期、作用域和可见性。主要包括:`auto`(默认存储类,块级作用域),`register`(建议存储在寄存器中,作用域同 `auto`,不可取地址),`static`(生命周期贯穿整个程序,局部静态变量在函数间保持值,全局静态变量限于本文件),`extern`(声明变量在其他文件中定义,允许跨文件访问)。此外,`typedef` 用于定义新数据类型名称,提升代码可读性。 示例代码展示了不同存储类变量的使用方式,通过两次调用 `function()` 函数,观察静态变量 `b` 的变化。合理选择存储类可以优化程序性能和内存使用。
137 82
|
11天前
|
存储 弹性计算 缓存
阿里云服务器ECS通用型实例规格族特点、适用场景、指标数据解析
阿里云服务器ECS提供了多种通用型实例规格族,每种规格族都针对不同的计算需求、存储性能、网络吞吐量和安全特性进行了优化。以下是对存储增强通用型实例规格族g8ise、通用型实例规格族g8a、通用型实例规格族g8y、存储增强通用型实例规格族g7se、通用型实例规格族g7等所有通用型实例规格族的详细解析,包括它们的核心特点、适用场景、实例规格及具体指标数据,以供参考。
阿里云服务器ECS通用型实例规格族特点、适用场景、指标数据解析
|
3天前
|
消息中间件 canal 关系型数据库
Maxwell:binlog 解析器,轻松同步 MySQL 数据
Maxwell:binlog 解析器,轻松同步 MySQL 数据
32 11
|
3天前
|
存储 关系型数据库 MySQL
深入解析MySQL数据存储机制:从表结构到物理存储
深入解析MySQL数据存储机制:从表结构到物理存储
12 1
|
8天前
|
数据采集 存储 JavaScript
构建您的第一个Python网络爬虫:抓取、解析与存储数据
【9月更文挑战第24天】在数字时代,数据是新的金矿。本文将引导您使用Python编写一个简单的网络爬虫,从互联网上自动抓取信息。我们将介绍如何使用requests库获取网页内容,BeautifulSoup进行HTML解析,以及如何将数据存储到文件或数据库中。无论您是数据分析师、研究人员还是对编程感兴趣的新手,这篇文章都将为您提供一个实用的入门指南。拿起键盘,让我们开始挖掘互联网的宝藏吧!
|
4天前
|
存储 算法 Java
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
本文介绍了 JVM 的内存区域划分、类加载过程及垃圾回收机制。内存区域包括程序计数器、堆、栈和元数据区,每个区域存储不同类型的数据。类加载过程涉及加载、验证、准备、解析和初始化五个步骤。垃圾回收机制主要在堆内存进行,通过可达性分析识别垃圾对象,并采用标记-清除、复制和标记-整理等算法进行回收。此外,还介绍了 CMS 和 G1 等垃圾回收器的特点。
13 0
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
|
17天前
|
存储 关系型数据库 MySQL
技术解析:MySQL中取最新一条重复数据的方法
以上提供的两种方法都可以有效地从MySQL数据库中提取每个类别最新的重复数据。选择哪种方法取决于具体的使用场景和MySQL版本。子查询加分组的方法兼容性更好,适用于所有版本的MySQL;而窗口函数方法代码更简洁,执行效率可能更高,但需要MySQL 8.0及以上版本。在实际应用中,应根据数据量大小、查询性能需求以及MySQL版本等因素综合考虑,选择最合适的实现方案。
86 6
|
22天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
19天前
|
存储 监控 算法
Java中的内存管理与垃圾回收机制解析
本文深入探讨了Java编程语言中的内存管理策略和垃圾回收机制。首先介绍了Java内存模型的基本概念,包括堆、栈以及方法区的划分和各自的功能。进一步详细阐述了垃圾回收的基本原理、常见算法(如标记-清除、复制、标记-整理等),以及如何通过JVM参数调优垃圾回收器的性能。此外,还讨论了Java 9引入的接口变化对垃圾回收的影响,以及如何通过Shenandoah等现代垃圾回收器提升应用性能。最后,提供了一些编写高效Java代码的实践建议,帮助开发者更好地理解和管理Java应用的内存使用。

推荐镜像

更多
下一篇
无影云桌面