PyTorch 2.0 实操:为 HuggingFace 和 TIMM 模型提速!

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: PyTorch 2.0 实操:为 HuggingFace 和 TIMM 模型提速!

   PyTorch 2.0 通过简单一行 torch.compile() 就可以使模型训练速度提高 30%-200%,本教程将演示如何真实复现这种提速。

torch.compile() 可以轻松地尝试不同的编译器后端,进而加速 PyTorch 代码的运行。它作为 torch.jit.script() 的直接替代品,可以直接在 nn.Module 上运行,无需修改源代码。

上篇文章中,我们介绍了 torch.compile 支持任意的 PyTorch 代码、control flow、mutation,并一定程度上支持 dynamic shapes。

通过对 163 个开源模型进行测试,我们发现 torch.compile() 可以带来 30%-200% 的加速。

opt_module = torch.compile(module)

测试结果详见:

https://github.com/pytorch/to...

本教程将演示如何利用 torch.compile() 为模型训练提速。

要求及设置

对于 GPU 而言(越新的 GPU 性能提升越突出):

pip3 install numpy --pre torch[dynamo] --force-reinstall --extra-index-url https://download.pytorch.org/whl/nightly/cu117

对于 CPU 而言:

pip3 install --pre torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu

可选:验证安装

git clone https://github.com/pytorch/pytorch
cd tools/dynamo
python verify_dynamo.py

可选:Docker 安装

在 PyTorch 的 Nightly Binaries 文件中提供了所有必要的依赖项,可以通过以下方式下载:

docker pull ghcr.io/pytorch/pytorch-nightly

对于临时测试 (ad hoc experiment),只需确保容器能够访问所有 GPU 即可:

docker run --gpus all -it ghcr.io/pytorch/pytorch-nightly:latest /bin/bash

开始

简单示例

先来看一个简单示例,注意,GPU 越新速度提升越明显。

import torch
   def fn(x, y):
       a = torch.sin(x).cuda()
       b = torch.sin(y).cuda()
       return a + b
   new_fn = torch.compile(fn, backend="inductor")
   input_tensor = torch.randn(10000).to(device="cuda:0")
   a = new_fn()

这个例子实际上不会提升速度,但是可以抛砖引玉。

该示例中,torch.cos() 和 torch.sin() 是逐点运算 (pointwise ops) 的例子,他们可以在向量上逐一操作 element,一个更著名的逐点运算是 torch.relu()。

eager mode 下的逐点运算并不是最优解,因为每个算子都需要从内存中读取一个张量、做一些更改,然后再写回这些更改。

PyTorch 2.0 最重要的一项优化是融合 (fusion)。

因此,该例中就可以把 2 次读和 2 次写变成 1 次读和 1 次写,这对较新的 GPU 来说是至关重要的,因为这些 GPU 的瓶颈是内存带宽(能多快地把数据发送到 GPU)而不是计算(GPU 能多快地进行浮点运算)。

PyTorch 2.0 第二个重要优化是 CUDA graphs。

CUDA graphs 有助于消除从 Python 程序中启动单个内核的开销。

torch.compile() 支持许多不同的后端,其中最值得关注的是 Inductor,它可以生成 Triton 内核。

https://github.com/openai/triton

这些内核是用 Python 写的,但却优于绝大多数手写的 CUDA 内核。假设上面的例子叫做 trig.py,实际上可以通过运行来检查生成 triton 内核的代码。

T

TORCHINDUCTOR_TRACE=1 python trig.py
@pointwise(size_hints=[16384], filename=__file__, meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': 0, 'constants': {}, 'configs': [instance_descriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]})
   @triton.jit
   def kernel(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
       xnumel = 10000
       xoffset = tl.program_id(0) * XBLOCK
       xindex = xoffset + tl.reshape(tl.arange(0, XBLOCK), [XBLOCK])
       xmask = xindex < xnumel
       x0 = xindex
       tmp0 = tl.load(in_ptr0 + (x0), xmask)
       tmp1 = tl.sin(tmp0)
       tmp2 = tl.sin(tmp1)
       tl.store(out_ptr0 + (x0 + tl.zeros([XBLOCK], tl.int32)), tmp2, xmask)

以上代码可知:两个 sins 确实发生了融合,因为两个 sin 算子发生在一个 Triton 内核中,而且临时变量被保存在 register 中,访问速度非常快。

真实模型示例

以 PyTorch Hub 中的 resnet50 为例:

import torch
   model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
   opt_model = torch.compile(model, backend="inductor")
   model(torch.randn(1,3,64,64))

实际运行中会发现,第一次运行速度很慢,这是因为模型正在被编译。随后的运行速度会加快,所以在开始基准测试之前,通常的做法是对模型进行 warm up。

可以看到,这里我们用「inductor」表示编译器名称,但它不是唯一可用的后端,可以在 REPL 中运行 torch._dynamo.list_backends() 来查看可用后端的完整列表。

也可以试试 aot_cudagraphs 或 nvfuser 。

Hugging Face 模型示例

PyTorch 社区经常使用 transformers 或 TIMM 的预训练模型:

https://github.com/huggingfac...

https://github.com/rwightman/...

PyTorch 2.0 的设计目标之一,就是任意编译栈,都需要在实际运行的绝大多数模型中,开箱即用。

这里我们直接从 HuggingFace hub 下载一个预训练的模型,并进行优化:

import torch
   from transformers import BertTokenizer, BertModel
   # Copy pasted from here https://huggingface.co/bert-base-uncased
   tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
   model = BertModel.from_pretrained("bert-base-uncased").to(device="cuda:0")
   model = torch.compile(model) # This is the only line of code that we changed
   text = "Replace me by any text you'd like."
   encoded_input = tokenizer(text, return_tensors='pt').to(device="cuda:0")
   output = model(**encoded_input)

如果从模型中删除 to(device="cuda:0") 和 encoded_input ,PyTorch 2.0 将生成为在 CPU 上运行优化的 C++ 内核。

可以检查 BERT 的 Triton 或 C++ 内核,它们显然比上面的三角函数的例子更复杂。但如果你了解 PyTorch 可以略过。

同样的代码与以下一起使用,仍旧可以得到更好的效果:

同样的,试试 TIMM 的例子:

import timm
   import torch
   model = timm.create_model('resnext101_32x8d', pretrained=True, num_classes=2)
   opt_model = torch.compile(model, backend="inductor")
   opt_model(torch.randn(64,3,7,7))

PyTorch 的目标是建立一个能适配更多模型的编译器,为绝大多数开源模型的运行提速,现在就访问 HuggingFace Hub,用 PyTorch 2.0 为 TIMM 模型加速吧!

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
223 2
|
1月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
61 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
70 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
152 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
43 3
PyTorch 模型调试与故障排除指南
|
1月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
3月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
139 4
|
3月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
605 1
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
191 2
|
3月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与 ONNX:模型的跨平台部署策略
【8月更文第27天】深度学习模型的训练通常是在具有强大计算能力的平台上完成的,比如配备有高性能 GPU 的服务器。然而,为了将这些模型应用到实际产品中,往往需要将其部署到各种不同的设备上,包括移动设备、边缘计算设备甚至是嵌入式系统。这就需要一种能够在多种平台上运行的模型格式。ONNX(Open Neural Network Exchange)作为一种开放的标准,旨在解决模型的可移植性问题,使得开发者可以在不同的框架之间无缝迁移模型。本文将介绍如何使用 PyTorch 将训练好的模型导出为 ONNX 格式,并进一步探讨如何在不同平台上部署这些模型。
245 2
下一篇
无影云桌面