错字修改 | 布署1个中文文文本拼蟹纠错模型

简介: 错字修改 | 布署1个中文文文本拼蟹纠错模型

image.png

内容一览:中文文本错误的种类之一为拼写错误,本篇文章为利用 BART 预训练方法实现中文文本纠错功能的模型部署教程。关键词:BART 中文拼写纠错 NLP本文首发自微信公众号:HyperAI超神经

中文文本错误3大障碍:拼写、语法、语义

中文文本纠错是当前自然语言处理领域的一个重要分支,旨在针对中文文本错误等进行检测与纠正。常见的中文文本错误包括拼写错误、语法错误以及语义错误。

1. 拼写错误:

指由于输入法、语音转文字软件等原因导致的用字或用词错误,主要表现为错误使用了同音字、形近字、混消音等,如「天气晴郎--天气晴朗」「时侯--时候」。

image.png

2. 语法错误:

指由于输入法、手写疏忽、OCR 识别乱序等导致的字词缺失、冗余、乱序或搭配不当等,如「虚心使使人进步--虚心使人进步」。

3. 语义错误:

由于对某些知识不了解,或语言组织能力欠缺导致的知识及逻辑错误,如「一年有 3 个季度--一年有 4 个季度」。

本文中,我们将以最常见的拼写错误为例,演示如何借助 BART 模型,进行中文文本纠错模型部署。

直接运行教程请访问:

https://openbayes.com/console/open-tutorials/containers/YvkMjHySdef

BART:「采众长」的 SOTA 模型

BART 全称 Bidirectional and Auto-Regressive Transformers,是一个为预训练 seq2seq 模型而设计的去噪自编码器, 适用于自然语言生成、翻译及理解任务,由 Meta(原 Facebook)在 2019 年提出。

论文详见:

https://arxiv.org/pdf/1910.13...

BART 模型吸纳借鉴了 BERT 和 GPT 的优点,使用标准的 Transformer 结构作为基础:

  • 解码器模块参考 GPT: 将 ReLU 激活函数替换为 GeLU 激活函数
  • 编码器模块区别于 BERT: 舍弃了前馈神经网络模块,精简了模型参数
  • 编解码器衔接部分参考了 Transformer: 解码器的每一层都要对编码器最后一层的输出信息进行交叉注意力计算(也就是编解码注意力机制)

image.png

本教程中,我们借助 nlp_bart_text-error-correction_chinese 模型进行模型部署。

更多信息可访问:

https://modelscope.cn/models/damo/nlp_bart_text-error-correction_chinese/summary

教程详解:创建一个在线文本纠错Demo

环境准备

在 jupyter 终端中执行以下命令安装依赖:

pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
pip install fairseq

模型下载

在终端中执行以下命令下载模型:

git clone http://www.modelscope.cn/damo/nlp_bart_text-error-correction_chinese.git

模型下载需要较长时间,此容器中已有下载好的模型,可直接使用,位于 nlp_bart_text-error-correction_chinese 目录下。

快速使用

image.png

模型部署

Serving 服务编写

编写predictor.py文件:

  • 导入依赖库:除了业务中用到的库之外,需要额外依赖 openbayes-serving。
import openbayes_serving as serv
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
  • Predictor 类:无需继承其他类,至少提供 init 和 predict 两个接口。
  • __init__ 中指定模型路径,加载模型
  • predict 中进行推理,返回结果
class Predictor:
  def __init__(self):
      self.model_path = './nlp_bart_text-error-correction_chinese'
      self.corrector = pipeline(Tasks.text_error_correction, model=self.model_path)
def predict(self, json):
  text = json["input"].lower()
  result = self.corrector(text)
  return result

运行:启动服务

if __name__ == '__main__':
    serv.run(Predictor)

测试

在终端中执行 python predictor.py,成功开启服务后,在此 Notebook 中执行下列代码进行测试。

注意:在容器中进行测试时,flask 版本大于 2.1 可能出现重复注册报错,降低版本即可运行。

import requests
text = {"input": "这洋的话,下一年的福气来到自己身上。"}
result = requests.post('http://localhost:8080', json=text)
result.json()
{'output': '这样的话,下一年的福气就会来到自己身上。'}

除了通过本地访问地址 http://localhost:8080还可以通过终端中提示的外部可访问的 URL 进行测试。

image.png

注意:对于不同的 OpenBayes 算力容器,外部可访问的 URL 各不相同,直接使用本教程中的链接是无效的,需用终端中提示的链接进行替换

result = requests.post('https://openbayes.com/jobs-auxiliary/open-tutorials/t23g93jjm95d', json=text)
result.json()

部署

测试成功后,停止此算力容器,等待同步数据完成。

在「算力容器--模型部署」中点击「创建新部署」,选择与开发时相同的镜像,绑定此算力容器,点击「部署」,即可进行在线测试。

image.png

更多模型部署相关信息可参考:

https://openbayes.com/docs/serving/

至此,一个支持在线测试的中文文本纠错模型就训练+部署完成啦!

查看并运行完整教程,访问以下链接:

https://openbayes.com/console/open-tutorials/containers/YvkMjHySdef

快来试试你的中文纠错模型吧!

—— 完 ——

相关文章
|
自然语言处理 Java 大数据
阿里云自然语言处理--文本纠错(中文)Java 调用示例
自然语言处理(Natural Language Processing,简称NLP),是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,旨在帮助用户高效的处理文本,已经广泛应用在电商、文娱、司法、公安、金融、医疗、电力等行业客户的多项业务中,取得了良好的效果。文本纠错产品是基于海量大数据研发,为有文本纠错需求的产品提供服务。能够准确识别输入文本中出现的拼写错别字及其段落位置信息,并针对性给出正确的建议文本内容。本文将使用Java CommonSDK演示文本纠错(中文)服务的快速调用以供参考。
1972 0
阿里云自然语言处理--文本纠错(中文)Java 调用示例
|
4月前
|
人工智能 Java API
构建基于Java的AI智能体:使用LangChain4j与Spring AI实现RAG应用
当大模型需要处理私有、实时的数据时,检索增强生成(RAG)技术成为了核心解决方案。本文深入探讨如何在Java生态中构建具备RAG能力的AI智能体。我们将介绍新兴的Spring AI项目与成熟的LangChain4j框架,详细演示如何从零开始构建一个能够查询私有知识库的智能问答系统。内容涵盖文档加载与分块、向量数据库集成、语义检索以及与大模型的最终合成,并提供完整的代码实现,为Java开发者开启构建复杂AI智能体的大门。
2514 58
|
机器学习/深度学习 人工智能 自然语言处理
昇腾AI行业案例(四):基于 Bert 模型实现文本分类
欢迎学习《昇腾行业应用案例》的“基于 Bert 模型实现文本分类”实验。在本实验中,您将学习如何使用利用 NLP (natural language processing) 领域的AI模型来构建一个端到端的文本系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
959 0
|
JSON 缓存 前端开发
HarmonyOS NEXT 5.0鸿蒙开发一套影院APP(附带源码)
本项目基于HarmonyOS NEXT 5.0开发了一款影院应用程序,主要实现了电影和影院信息的展示功能。应用包括首页、电影列表、影院列表等模块。首页包含轮播图与正在热映及即将上映的电影切换显示;电影列表模块通过API获取电影数据并以网格形式展示,用户可以查看电影详情;影院列表则允许用户选择城市后查看对应影院信息,并支持城市选择弹窗。此外,项目中还集成了Axios用于网络请求,并进行了二次封装以简化接口调用流程,同时添加了请求和响应拦截器来处理通用逻辑。整体代码结构清晰,使用了组件化开发方式,便于维护和扩展。 该简介概括了提供的内容,但请注意实际开发中还需考虑UI优化、性能提升等方面的工作。
470 11
|
自然语言处理 PyTorch 算法框架/工具
一键式文本纠错工具,整合了BERT、MacBERT、ELECTRA、ERNIE等多种模型,让您立即享受纠错的便利和效果
一键式文本纠错工具,整合了BERT、MacBERT、ELECTRA、ERNIE等多种模型,让您立即享受纠错的便利和效果
一键式文本纠错工具,整合了BERT、MacBERT、ELECTRA、ERNIE等多种模型,让您立即享受纠错的便利和效果
|
Java
SpringBoot 内部方法调用,事务不起作用的原因及解决办法
在做业务开发时,遇到了一个事务不起作用的问题。大概流程是这样的,方法内部的定时任务调用了一个带事务的方法,失败后事务没有回滚。查阅资料后,问题得到解决,记录下来分享给大家。
733 4
|
安全 Linux 网络安全
【工具使用】几款优秀的SSH连接客户端软件工具推荐FinalShell、Xshell、MobaXterm、OpenSSH、PUTTY、Terminus、mRemoteNG、Terminals等
【工具使用】几款优秀的SSH连接客户端软件工具推荐FinalShell、Xshell、MobaXterm、OpenSSH、PUTTY、Terminus、mRemoteNG、Terminals等
133018 0
|
存储 Java 测试技术
阿里巴巴java开发手册
这篇文章是关于阿里巴巴Java开发手册的整理,内容包括编程规约、异常日志、单元测试、安全规约、MySQL数据库使用以及工程结构等方面的详细规范和建议,旨在帮助开发者编写更加规范、高效和安全的代码。
|
机器学习/深度学习 自然语言处理 大数据
社交媒体的情感分析大数据模型
构建基于大数据的情感分析模型,利用Python和机器学习处理社交媒体数据。情感分析识别文本情感倾向,助力市场洞察和舆情监控。技术栈包括Python、NLP库(nltk, spaCy, TextBlob, VADER)、Scikit-learn、TensorFlow/PyTorch及大数据工具。数据收集(如Twitter API)、预处理(去除噪声、分词)、特征提取(TF-IDF、词嵌入)、模型训练(逻辑回归、BERT)是关键步骤。模型能捕捉文本情感,支持决策,随着技术进步,应用前景广阔。
1963 10
|
Python Windows
在 Windows 平台下打包 Python 多进程代码为 exe 文件的问题及解决方案
在使用 Python 进行多进程编程时,在 Windows 平台下可能会出现将代码打包为 exe 文件后无法正常运行的问题。这个问题主要是由于在 Windows 下创建新的进程需要复制父进程的内存空间,而 Python 多进程机制需要先完成父进程的初始化阶段后才能启动子进程,所以在这个过程中可能会出现错误。此外,由于没有显式导入 Python 解释器,也会导致 Python 解释器无法正常工作。为了解决这个问题,我们可以使用函数。
668 5