CV1 计算机眼中的图像

简介: 该输出有两个[],说明该图像有两条通道,每一个像素都由一个8-bit整数表示,每个像素的范围是(0~255),其中,0表示最黑,255表示最白

一 基本读写图像文件


无论哪种格式,每一个像素都会有一个值,但不同格式表示像素的方式有所不同


  • numpy.zero()函数


调用该函数,可以通过二维NumPy数组来简单创建一个黑色的正方形图像


img=numpy.zeros((3,3),dtype=numpy.uint8)


控制台print一下,可得


/

[[0 0 0]
[0 0 0]
[0 0 0]]


该输出有两个[],说明该图像有两条通道,每一个像素都由一个8-bit整数表示,每个像素的范围是(0~255),其中,0表示最黑,255表示最白


  • cv2.cvtColor函数


使用该函数,可以把图像转化为BGR格式


img=cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)


控制台print一下,可得


[[[0 0 0] [0 0 0] [0 0 0]]
[[0 0 0] [0 0 0] [0 0 0]]
[[0 0 0] [0 0 0] [0 0 0]]]


现在,每个像素点都由一个三元数组,并且每一个二维数组/整形(integer)分别表示一个B/G/R通道


  • img.shape参数


可以通过shape属性来查看图像的结构,它会返回行和列,如果有2个及以上的通道,还会返回通道数


print(img.shape)


返回(414,500,3);414代表高【h】,500代表宽【w】,3是通道数【c】/或者说像素红绿蓝也行


  • 图像的读取及保存


image = cv2.imread('D:/opencv/imgurl/1.png')
cv2.imwrite('D:/opencv/imgurl/1.png',image)


这段代码,读取一张png图片,然后把它保存为jpg格式


  • 将图片转换成灰度图,并保存


grayImage = cv2.imread('D:/opencv/imgurl/1.png',cv2.IMREAD_GRAYSCALE)
cv2.imwrite('D:/opencv/imgurl/1.png',grayImage)


二 打开图像


import cv2
import numpy
img = cv2.imread('D:/opencv/imgurl/2.jpg')
cv2.imshow('p',img)
cv2.waitKey()
cv2.destroyAllWindows()


  • cv2.imread()函数


cv2.imread('D:/opencv/imgurl/1.png')


括号里面得参数是图片的路径


  • cv2.imshow()函数


cv2.imshow('openpng',img)


第一个参数是给窗口命名(命名只能是英文),第二个参数是已imread的图像


  • cv2.waitKey()函数


#等待时间,毫秒级别,0表示任意键终止
cv2.waitKey(1000)


等待键盘输入,函数WaitKey无限地等待一个键事件,如果没有键,则返回-1


触发这段代码,窗口消失


  • cv2.destroyAllWindow()函数


cv2.destroyAllWindows()


关掉所有窗口,销毁内存


三 查询图像的信息


print(type(img1)) #查询底层格式
print(img1.size) #计算像素点的个数
print(img1.dtype) #查询数据的类型


目录
打赏
0
0
0
0
0
分享
相关文章
目标检测笔记(四):自适应缩放技术Letterbox完整代码和结果展示
自适应缩放技术Letterbox通过计算缩放比例并填充灰边像素,将图片调整为所需尺寸,保持原始比例不变,广泛应用于目标检测领域。
398 1
目标检测笔记(四):自适应缩放技术Letterbox完整代码和结果展示
Mistral 7B v0.2 基础模型开源,魔搭社区微调教程和评测来啦!
Mistral AI在3月24日突然发布并开源了 Mistral 7B v0.2模型,有如下几个特点
面向未来的FunAudioLLM:技术展望与发展趋势
【8月更文第28天】随着人工智能技术的不断进步,语音合成技术也正在经历着前所未有的变革。FunAudioLLM作为一款领先的语音合成框架,在语音合成、识别以及情感控制等方面展现出了卓越的能力。本文将探讨FunAudioLLM的未来技术革新方向,并预测其对音频行业的影响。
225 1
[Eigen中文文档] 深入了解 Eigen - 惰性求值与混叠(Aliasing)
Eigen具有智能的编译时机制,可以实现惰性求值并在适当的情况下删除临时变量。它会自动处理大多数情况下的混叠问题,例如矩阵乘积。自动行为可以通过使用MatrixBase::eval()和MatrixBase::noalias()方法手动覆盖。
487 0
YOLO实践应用之搭建开发环境(Windows系统、Python 3.8、TensorFlow2.3版本)
基于YOLO进行物体检测、对象识别,先和大家分享如何搭建开发环境,会分为CPU版本、GPU版本的两种开发环境,本文会分别详细地介绍搭建环境的过程。主要使用TensorFlow2.3、opencv-python4.4.0、Pillow、matplotlib 等依赖库。
509 0
ProxyError: Conda cannot proceed due to an error in your proxy configuration
出现这个问题是因为打开了代理服务器的原因,我们只要关闭了代理即可
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问