python基础--函数入门与进阶

简介: 函数入门与进阶

函数参数的使用

Python函数参数的使用方法如下:

位置参数

位置参数:位置参数是指在调用函数时,按照函数定义时参数的位置顺序传递参数的方式。

例如:

def add(x, y):
    return x + y
result = add(1, 2)
print(result)  # 输出3

在上面的例子中,add 函数有两个位置参数 x 和 y,在调用函数时,按照参数的位置顺序传递了两个参数,分别是 1 和 2。在使用位置参数时,需要按照函数定义时参数的位置顺序传递参数,以确保函数能够正确地执行。

关键字参数

关键字参数是指在调用函数时,使用形如 key=value 的语法显式地指定参数的名称和值。例如:

def add(x, y):
    return x + y
result = add(y=2, x=1)
print(result)  # 输出3

在上面的例子中,调用 add 函数时,使用了关键字参数 x=1 和 y=2,这样可以明确指定参数的名称和值,避免了按照位置传参时可能出现的错误。关键字参数还可以与位置参数混合使用,但是必须先传递位置参数,然后再传递关键字参数.


默认参数

默认参数是指在定义函数时,给参数赋予一个默认值,如果在调用函数时没有传入该参数,则使用默认值。例如:

def add(x=0, y=0):
    return x + y
result = add()
print(result)  # 输出0

在上面的例子中,add 函数有两个默认参数 x 和 y,它们的默认值都是 0。当调用 add 函数时,没有传入任何参数,因此函数使用了默认值计算结果,最终返回了 0。


可变参数

可变参数是指在函数定义时,使用 *args 的语法表示可以接收任意个数的位置参数,这些参数会被自动封装成一个元组,例如:

def add(*args):
    result = 0
    for arg in args:
        result += arg
    return result
result = add(1, 2, 3)
print(result)  # 输出6

在上面的例子中,add 函数使用了可变参数 *args,这样就可以接收任意个数的位置参数,这些参数会被封装成一个元组。在函数内部,使用循环遍历这个元组,计算所有参数的和,并返回结果。


关键字可变参数

关键字可变参数是指在函数定义时,使用 **kwargs 的语法表示可以接收任意个数的关键字参数,这些参数会被自动封装成一个字典,例如:

def add(**kwargs):
    result = 0
    for key, value in kwargs.items():
        result += value
    return result
result = add(x=1, y=2, z=3)
print(result)  # 输出6

在上面的例子中,add 函数使用了关键字可变参数 **kwargs,这样就可以接收任意个数的关键字参数,这些参数会被封装成一个字典。在函数内部,使用循环遍历这个字典,计算所有参数的和,并返回结果。


调用 add 函数时,传入了三个关键字参数 x=1、y=2 和 z=3,这些参数被封装成一个字典 {‘x’: 1, ‘y’: 2, ‘z’: 3},然后被传递给函数,函数计算这些参数的和并返回结果 6。


以上就是Python函数参数的使用方法。


函数的相互调用

函数的相互调用指的是,一个函数调用另一个函数,或者一个函数调用自身(递归调用)。函数的相互调用可以让程序更加模块化和可读性更高,因为可以将一个大问题拆分成多个小问题,每个小问题都由一个函数来解决。

举个栗子:

def add(x, y):
    return x + y
def multiply(x, y):
    result = 0
    for i in range(y):
        result = add(result, x)
    return result
result = multiply(3, 4)
print(result)  # 输出12

4.1.png

在上面的例子中,add 函数用于计算两个数的和,multiply 函数用于计算两个数的乘积。在 multiply 函数内部,通过循环调用 add 函数来实现乘法运算,最终返回结果 12。

下面是一个递归调用的例子,演示了如何在函数内部调用自身:

def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n - 1)
result = factorial(4)
print(result)  # 输出24

4.2.png

在上面的例子中,factorial 函数用于计算一个数的阶乘。在函数内部,使用递归调用来实现阶乘的计算,当 n 等于 0 时,返回 1,否则返回 n * factorial(n-1)。最终返回结果 24。


函数的作用域

函数的作用域指的是变量的可见范围,即变量可以被访问的区域。在 Python 中,函数的作用域分为两种,分别是全局作用域和局部作用域。


全局作用域

全局作用域指的是在函数外部定义的变量,它们可以在整个程序中被访问和修改。例如:

x = 10
def foo():
    print(x)
foo()  # 输出10

43.png

在上面的例子中,变量 x 在函数外部定义,它的作用域是全局作用域。在 foo 函数内部,可以访问变量 x 并输出它的值。

如果在函数内部要修改全局作用域的变量,需要使用 global 关键字声明变量。例如:

x = 10
def foo():
    global x
    x = 20
foo()
print(x)  # 输出20

4.4.png

在上面的例子中,使用 global 关键字声明变量 x,这样就可以在函数内部修改全局作用域的变量。在调用 foo 函数后,变量 x 的值被修改为 20。

局部作用域

局部作用域指的是在函数内部定义的变量,它们只能在函数内部被访问和修改。例如:

def foo():
    x = 10
    print(x)
foo()  # 输出10

4.5.png

数据的打包与拆包

数据打包

使用元组或列表可以实现打包操作,例如:

a = 10
b = "hello"
c = [1, 2, 3]
d = (a, b, c)
print(d)  # (10, 'hello', [1, 2, 3])

4.6.png

在上面的例子中,将元组d中的数据项分别赋值给变量a、b、c,这就是拆包操作。注意,拆包时变量的个数必须与元组或列表中的数据项个数相等,否则会抛出异常。


lambda函数

Lambda函数是一种匿名函数,它可以在需要一个函数的地方被使用,而不必显式地定义一个函数。Lambda函数通常用于一些简单的函数,可以在一行代码中完成。Lambda函数的语法如下:


lambda 参数: 表达式

其中,参数可以是多个,用逗号分隔,表达式是函数体,其结果就是函数的返回值。


下面举例说明Lambda函数的用法:

# 定义一个普通函数
def add(x, y):
    return x + y
# 使用Lambda函数
f = lambda x, y: x + y
# 调用函数
print(add(2, 3))  # 输出 5
print(f(2, 3))   # 输出 5

4.7.png

在上面的例子中,我们先定义了一个普通函数add,然后使用Lambda函数定义了一个等价的函数f。可以看到,使用Lambda函数定义函数比较简洁,而且可以直接把它赋值给一个变量。最后,我们调用了这两个函数,得到了相同的结果。

Lambda函数还可以用于函数的参数,例如:

# 使用Lambda函数作为参数
result = map(lambda x: x * x, [1, 2, 3, 4, 5])
# 输出结果
print(list(result))  # 输出 [1, 4, 9, 16, 25]

4.8.png

在上面的例子中,我们使用Lambda函数作为map函数的第一个参数,对列表中的每个元素求平方。注意,map函数返回的是一个迭代器,需要用list函数将其转化为列表。

递归

递归是在函数定义中使用函数自身的一种方法。递归函数通常具有两部分:基本情况和递归情况。基本情况是指在递归过程中需要结束递归的情况,递归情况是指在递归过程中需要调用函数自身的情况。递归函数的实现通常使用if语句来判断是否达到基本情况,如果达到,则直接返回结果;否则,继续调用函数自身,直到达到基本情况。


下面通过一个例子来说明递归函数的实现:

# 计算阶乘
def factorial(n):
    # 基本情况
    if n == 0 or n == 1:
        return 1
    # 递归情况
    else:
        return n * factorial(n-1)
# 测试
print(factorial(5))  # 输出 120

4.9.png

在上面的例子中,我们定义了一个函数factorial,用于计算n的阶乘。首先判断n是否为0或1,如果是,则直接返回1,这就是基本情况。否则,继续调用函数自身,计算(n-1)的阶乘,这就是递归情况。最终得到n的阶乘。


目录
打赏
0
0
0
0
7
分享
相关文章
|
16天前
|
Python format()函数高级字符串格式化详解
在 Python 中,字符串格式化是一个重要的主题,format() 函数作为一种灵活且强大的字符串格式化方法,被广泛应用。format() 函数不仅能实现基本的插入变量,还支持更多高级的格式化功能,包括数字格式、对齐、填充、日期时间格式、嵌套字段等。 今天我们将深入解析 format() 函数的高级用法,帮助你在实际编程中更高效地处理字符串格式化。
68 0
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
49 1
|
1月前
|
Python字符串格式化利器:f-strings入门指南
Python字符串格式化利器:f-strings入门指南
143 80
Python与MongoDB的亲密接触:从入门到实战的代码指南
本文详细介绍了Python与MongoDB结合使用的实战技巧,涵盖环境搭建、连接管理、CRUD操作、高级查询、索引优化、事务处理及性能调优等内容。通过15个代码片段,从基础到进阶逐步解析,帮助开发者掌握这对黄金组合的核心技能。内容包括文档结构设计、批量操作优化、聚合管道应用等实用场景,适合希望高效处理非结构化数据的开发者学习参考。
87 0
Python 的内建函数
Python 的内置函数列表,方便查询使用方法。
Python内置函数ord()详解
`ord()` 是 Python 中用于将单个字符转换为对应 Unicode 码点的核心函数,支持 ASCII、多语言字符及特殊符号。其返回值为整数(范围 0-1114111),适用于字符编码验证、数据清洗、自定义排序、基础加解密等场景。使用时需注意参数长度必须为 1,否则会触发 `TypeError`。结合 `chr()` 函数可实现双向转换,进阶技巧包括多字节字符处理、编码范围检测及字符分类验证等。
揭秘Python的__init__.py:从入门到精通的包管理艺术
__init__.py是Python包管理中的核心文件,既是包的身份标识,也是模块化设计的关键。本文从其历史演进、核心功能(如初始化、模块曝光控制和延迟加载)、高级应用场景(如兼容性适配、类型提示和插件架构)到最佳实践与常见陷阱,全面解析了__init__.py的作用与使用技巧。通过合理设计,开发者可构建优雅高效的包结构,助力Python代码质量提升。
214 10
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
288 0
[oeasy]python091_列表_索引_index_中括号_索引函数
本文介绍了Python中列表与字符串的索引及index函数用法。通过range生成列表,使用索引[]访问和修改列表元素,index函数查找元素位置。字符串支持索引访问但不可直接修改。还探讨了16进制数在Python中的表示方法,以及日期、月份等特殊字符的Unicode范围。最后总结了列表与字符串操作的区别,并预告后续内容,提供蓝桥云课、GitHub和Gitee链接供进一步学习。
92 20
|
3月前
|
[oeasy]python086方法_method_函数_function_区别
本文详细解析了Python中方法(method)与函数(function)的区别。通过回顾列表操作如`append`,以及随机模块的使用,介绍了方法作为类的成员需要通过实例调用的特点。对比内建函数如`print`和`input`,它们无需对象即可直接调用。总结指出方法需基于对象调用且包含`self`参数,而函数独立存在无需`self`。最后提供了学习资源链接,方便进一步探索。
95 17

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等