你还不会递归?告别困惑,我来教你

简介: 递归是一种应用非常广泛的算法(或者编程技巧)。之后我们要讲的很多数据结构和算法的编码实现都要用到递归,比如DFS深度优先搜索、前中后序二叉树遍历等等。所以,搞懂递归非常重要,否则,后面复杂一些的数据结构和算法学起来就会比较吃力。

@[toc]
在这里插入图片描述

🐱‍🐉作者简介:大家好,我是黑洞晓威,一名大二学生,希望和大家一起进步。
👿本文收录于 算法,本专栏是针对大学生、初学算法的人准备,解析常见的数据结构与算法,同时备战蓝桥杯。

如何理解“递归”?

递归是一种应用非常广泛的算法(或者编程技巧)。之后我们要讲的很多数据结构和算法的编码实现都要用到递归,比如DFS深度优先搜索、前中后序二叉树遍历等等。所以,搞懂递归非常重要,否则,后面复杂一些的数据结构和算法学起来就会比较吃力。

不过,别看我说了这么多,递归本身可是一点儿都不“高冷”,咱们生活中就有很多用到递归的例子。

周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊?电影院里面太黑了,看不清,没法数,现在你怎么办?

别忘了你是程序员,这个可难不倒你,递归就开始排上用场了。于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。但是,前面的人也看不清啊,所以他也问他前面的人。就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。直到你前面的人告诉你他在哪一排,于是你就知道答案了。

这就是一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。刚刚这个生活中的例子,我们用递推公式将它表示出来就是这样的:

f(n)=f(n-1)+1 其中,f(1)=1

f(n)表示你想知道自己在哪一排,f(n-1)表示前面一排所在的排数,f(1)=1表示第一排的人知道自己在第一排。有了这个递推公式,我们就可以很轻松地将它改为递归代码,如下:

int f(int n) {
  if (n == 1) return 1;
  return f(n-1) + 1;
}

递归需要满足的三个条件

刚刚这个例子是非常典型的递归,那究竟什么样的问题可以用递归来解决呢?我总结了三个条件,只要同时满足以下三个条件,就可以用递归来解决。

1.一个问题的解可以分解为几个子问题的解

何为子问题?子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。

2.这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样

比如电影院那个例子,你求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。

3.存在递归终止条件

把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。

还是电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是f(1)=1,这就是递归的终止条件。

如何编写递归代码?

刚刚铺垫了这么多,现在我们来看,如何来写递归代码?我个人觉得,写递归代码最关键的是 写出递推公式,找到终止条件,剩下将递推公式转化为代码就很简单了。

你先记住这个理论。我举一个例子,带你一步一步实现一个递归代码,帮你理解。

假如这里有n个台阶,每次你可以跨1个台阶或者2个台阶,请问走这n个台阶有多少种走法?如果有7个台阶,你可以2,2,2,1这样子上去,也可以1,2,1,1,2这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?

我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了1个台阶,另一类是第一步走了2个台阶。所以n个台阶的走法就等于先走1阶后,n-1个台阶的走法 加上先走2阶后,n-2个台阶的走法。用公式表示就是:

f(n) = f(n-1)+f(n-2)

有了递推公式,递归代码基本上就完成了一半。我们再来看下终止条件。当有一个台阶时,我们不需要再继续递归,就只有一种走法。所以f(1)=1。这个递归终止条件足够吗?我们可以用n=2,n=3这样比较小的数试验一下。

n=2时,f(2)=f(1)+f(0)。如果递归终止条件只有一个f(1)=1,那f(2)就无法求解了。所以除了f(1)=1这一个递归终止条件外,还要有f(0)=1,表示走0个台阶有一种走法,不过这样子看起来就不符合正常的逻辑思维了。所以,我们可以把f(2)=2作为一种终止条件,表示走2个台阶,有两种走法,一步走完或者分两步来走。

所以,递归终止条件就是f(1)=1,f(2)=2。这个时候,你可以再拿n=3,n=4来验证一下,这个终止条件是否足够并且正确。

我们把递归终止条件和刚刚得到的递推公式放到一起就是这样的:

f(1) = 1;
f(2) = 2;
f(n) = f(n-1)+f(n-2)

有了这个公式,我们转化成递归代码就简单多了。最终的递归代码是这样的:

int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}

我总结一下, 写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码

递归代码要警惕堆栈溢出

在实际的软件开发中,编写递归代码时,我们会遇到很多问题,比如堆栈溢出。而堆栈溢出会造成系统性崩溃,后果会非常严重。为什么递归代码容易造成堆栈溢出呢?我们又该如何预防堆栈溢出呢?

我在“栈”那一节讲过,函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。

比如前面的讲到的电影院的例子,如果我们将系统栈或者JVM堆栈大小设置为1KB,在求解f(19999)时便会出现如下堆栈报错:

Exception in thread "main" java.lang.StackOverflowError

那么,如何避免出现堆栈溢出呢?

我们可以通过在代码中限制递归调用的最大深度的方式来解决这个问题。递归调用超过一定深度(比如1000)之后,我们就不继续往下再递归了,直接返回报错。还是电影院那个例子,我们可以改造成下面这样子,就可以避免堆栈溢出了。不过,我写的代码是伪代码,为了代码简洁,有些边界条件没有考虑,比如x<=0。

// 全局变量,表示递归的深度。
int depth = 0;

int f(int n) {
  ++depth;
  if (depth > 1000) throw exception;

  if (n == 1) return 1;
  return f(n-1) + 1;
}

但这种做法并不能完全解决问题,因为最大允许的递归深度跟当前线程剩余的栈空间大小有关,事先无法计算。如果实时计算,代码过于复杂,就会影响代码的可读性。所以,如果最大深度比较小,比如10、50,就可以用这种方法,否则这种方法并不是很实用。

递归代码要警惕重复计算

除此之外,使用递归时还会出现重复计算的问题。刚才我讲的第二个递归代码的例子,如果我们把整个递归过程分解一下的话,那就是这样的:

在这里插入图片描述

从图中,我们可以直观地看到,想要计算f(5),需要先计算f(4)和f(3),而计算f(4)还需要计算f(3),因此,f(3)就被计算了很多次,这就是重复计算问题。

为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的f(k)。当递归调用到f(k)时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算,这样就能避免刚讲的问题了。

按照上面的思路,我们来改造一下刚才的代码:

public int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;

  // hasSolvedList可以理解成一个Map,key是n,value是f(n)
  if (hasSolvedList.containsKey(n)) {
    return hasSolvedList.get(n);
  }

  int ret = f(n-1) + f(n-2);
  hasSolvedList.put(n, ret);
  return ret;
}

除了堆栈溢出、重复计算这两个常见的问题。递归代码还有很多别的问题。

在时间效率上,递归代码里多了很多函数调用,当这些函数调用的数量较大时,就会积聚成一个可观的时间成本。在空间复杂度上,因为递归调用一次就会在内存栈中保存一次现场数据,所以在分析递归代码空间复杂度时,需要额外考虑这部分的开销,比如我们前面讲到的电影院递归代码,空间复杂度并不是O(1),而是O(n)。

最后说一句

感谢大家的阅读,文章通过网络资源与自己的学习过程整理出来,希望能帮助到大家。

才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以提出来,我会对其加以修改。

在这里插入图片描述

相关文章
|
Java 程序员
IT学不好没什么,大不了躺平
IT学不好没什么,大不了躺平
|
测试技术
解决Bug应有的心态和解决方法的一些思路、方法和心得
永远要相信程序是不会骗你的,是自己在处理理逻辑中出问题,而在特定的环境中才会出现或者是自己压根就想不到情况下出现。 前几天在处理一个接口任务时,在测试环境跑是一点都没有,但在正式环境却没有将数据拉下来。没有报任何错误,一度怀疑、抱怨! 还好最后找到问题解决了!
84 0
|
数据采集 Java 数据库
大学里面抢课到底可行吗?我来给你彻底说明白
大学里面抢课到底可行吗?我来给你彻底说明白
|
6月前
|
程序员 开发工具 Python
最全学Python有什么用?看完这些你肯定明白_学pysion的作用,2024年最新字节跳动面试严格吗
最全学Python有什么用?看完这些你肯定明白_学pysion的作用,2024年最新字节跳动面试严格吗
最全学Python有什么用?看完这些你肯定明白_学pysion的作用,2024年最新字节跳动面试严格吗
|
11月前
|
C语言
近期一系列个人做题反复记不住以及思路不清晰问题的总结
近期一系列个人做题反复记不住以及思路不清晰问题的总结
50 0
|
测试技术
初级软件测试面试题怎么找?提供的这两个地方你肯定用得上
最近几年,随着电子产品和互联网的蓬勃发展,各类科技公司如雨后春笋般出现,而软件公司作为科技类公司中的重要组成部分,在这支互联网大军中也占据了重要一席。因而,负责软件问题质检的软件测试岗位也逐渐成了这几年炙手可热的就业岗位之一。
148 0
|
算法 NoSQL API
到底该不该看源码(懂这三点儿就够了)
1、不要为了看源码而看源码 2、代码积累到一定程度,遇到问题自然就去查源码了,然后你就看懂了 3、两年内不要刻意去看源码,可以点开简单了解一下就行,前两年疯狂做项目就行了,后期项目做的多了,你自己就会有疑问,每次写代码就会问自己为什么要这样写?底层的原理是什么?很自觉的带着问题就去看源码了,如果你没有这样的疑问,那说明你也不适合去看源码了,写写业务代码,了了一生
191 0
|
测试技术
软件测试好学吗 只要选对了学习方式,就并不难学
我们都知道,如今互联网IT行业,在国内可是非常吃香的,尤其是近些年随着软件的普及,人们对软件的要求也是越来越高,因此国内各大互联网企业,也开始大量招聘软件测试人员,但由于这个岗位在我国的发展时间并不长,人员需求也是供应不求的。
198 0
软件测试好学吗 只要选对了学习方式,就并不难学
|
Java C语言
计算机教育中缺失的一课,劝学弟学妹们一句,一定要趁早补上,工作后会事半功倍!
各位学弟学妹们好,作为稍微年长的我(岁月是把杀猪刀啊),今天就给大家补补课。 在大学里的,我们上的计算机专业课程一般都是像操作系统、编译原理、计算机组成原理、计算机网络这些理论课程,还有一些像C语言、Java、.Net这些可以实践的课程,甚至还有可能让你焊一个收音机,但是对于一些基本习惯却很容易被忽略,需要学弟学妹们自行摸索。
219 0
计算机教育中缺失的一课,劝学弟学妹们一句,一定要趁早补上,工作后会事半功倍!
|
并行计算 Java Go
编程法则和现状:我们明白自认为明白的东西吗?
软件工程领域的知名专家Capers Jones,已经建立了涵盖20,000个项目的范围广泛的项目记录数据库,大部分都是大型的。有了这些数据支持,他经常写文章讨论,哪些活动和方法在实践中发挥着作用,以及如果可能,它们实际上提供多少提升幅度,它们的成本有多少。在这篇客座编辑里,他非正式地评价了一些编程和业务上的流行“法则”在面对软件开发现状时,是如何发挥作用的。
141 0
下一篇
无影云桌面